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1 Cylinder coordinate system

Since blood vessels can often be described as tubes with circular cross-sections, describing the governing equa-
tions in a (local) cylinder coordinate system is often convenient and yields simpler expressions. In the following,
we assume that the main cylinder axis is aligned with the z-axis of a corresponding Cartesian coordinate sys-
tem. Under this assumption, we can define the following coordinate transformations in terms of the Cartesian
coordinates (x, y, z):

x = r cos(θ), y = r sin(θ), z = z, (1)

where r is the radial coordinate, θ the circumferential coordinate, and z the axial coordinate. An arbitrary
vector field, u : R3 → R3, can be expressed in the cylinder coordinates (r, θ, z) by

u = urer + uθeθ + uzez. (2)

with the basis vectors er = (cos(θ), sin(θ), 0)T , eθ = (− sin(θ), cos(θ), 0)T , ez = (0, 0, 1)T .
Differential operators can be expressed in cylinder coordinates as well and have slightly different represen-

tations than in Cartesian coordinates. For the gradient of a scalar field, u : R3 → R, we get

grad(u) ≡ ∇u =
∂u

∂r
er +

1

r

∂u

∂θ
eθ +

∂u

∂z
ez. (3)

For the divergence of a vector field u : R3 → R3, we get

div(u) ≡ ∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

. (4)

For the curl of a vector field u, we get

curl(u) ≡ ∇× u =

(
1

r

∂uz
∂θ

− ∂uθ
∂z

)
er +

(
∂ur
∂z

− ∂uz
∂r

)
eθ +

(
1

r

∂(ruθ)

∂r
− 1

r

∂ur
∂θ

)
ez. (5)

For the Laplace operator applied to a scalar field u, we get

div grad(u) ≡ ∇2u ≡ ∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
. (6)

For the Laplace operator applied to a vector field u, we get

∇2u ≡ ∆u =

(
∆ur −

ur
r2

− 2

r2
∂uθ
∂θ

)
er +

(
∆uθ −

uθ
r2

− 2

r2
∂ur
∂θ

)
eθ +∆uzez, (7)
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where we reused the scalar Laplace operator for the sake of brevity.
The integration elements are also transformed. The volume element dV is given by dV = r drdθdz. The

area element dA is given by dA = r drdθ. As an example, a volume integral over a cylinder with radius R and
length L and integrand (integral kernel) 1 yields the cylinder volume,

∫
V

1 dV =

L∫
0

2π∫
0

R∫
0

1 r drdθdz =

L∫
0

2π∫
0

1

2
R2dθdz =

L∫
0

πR2dz = πR2L. (8)

2 Stress tensor

For incompressible Newtonian fluids, the deviatoric1 stress tensor τ (in Cartesian coordinates) is given by

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 = µ

 2∂vx
∂x

∂vx

∂y +
∂vy
∂x

∂vx

∂z + ∂vz
∂x

∂vx
∂y +

∂vy
∂x 2

∂vy

∂y
∂vy
∂z + ∂vz

∂y
∂vx

∂z + ∂vz

∂x
∂vy

∂z + ∂vz

∂y 2∂vz

∂z

 = µ
(
∇v + (∇v)T

)
= 2µD, (9)

where the off-diagonal entries τij are called shear stresses and the diagonal elements τii normal stresses, v =
(vx, vy, vz)

T denotes the velocity vector, µ the dynamic viscosity, ∇u, the gradient of vector u, AT the transpose
of matrix A, and D is the rate-of-strain tensor.

The deviatoric stress tensor appears in the general momentum balance as part of the Cauchy stress tensor (or
true stress tensor) σ which can be decomposed into a deviatoric and a non-deviatoric part. For incompressible
Newtoninan fluids, we have

σ = τ − pI = 2µD − pI, (10)

where p is the hydrostatic fluid pressure and I is the identity matrix (second-order tensor with 1 as diagonal
elements and all other elements zero).

2.1 Generalized Newtonian fluids

The constitutive equation for an incompressible Newtonian fluid is given by Eq. (9). We will now define the
shear rate magnitude γ̇ as

γ̇ :=
√
2D : D ≡

√
2DijDij . (11)

Using this definition, constitutive models for so-called generalized Newtonian fluids can be formulated, that is
models of the form

τ = 2µ(γ̇)D, (12)

where µ is the viscosity function that depends on the shear rate. One example is the generalized power law,
where

µ(γ̇) := λ(γ̇)γ̇n(γ̇)−1, (13)

and the parameters λ and n that may also depend on γ̇ have to be determined experimentally for a given fluid.
An overview of different functions that have been proposed to describe generalized Newtonian fluids is, for
instance, given by Irgens [6]. Blood (as well as many other colloid systems and suspensions) can be described
as a shear-thinning fluid, that is the apparent viscosity µ decreases with increasing shear rate. (In contrast, the
apparent viscosity of a shear-thickening fluid increases with increasing shear rate.)

3 Incompressible Navier-Stokes equations

The motion of incompressible fluids is governed by the (incompressible) Navier-Stokes equations,

ρ
∂v

∂t
+∇ · (ρv ⊗ v − σ)− ρb = 0, (14a)

∇ · v = 0, (14b)

1A deviator or deviatoric tensor is a second order tensor A with zero trace, tr(A) =
∑n

i=0 aii = 0. This property can be easily
verified for the given τ by employing the mass balance equation for incompressible fluids, ∇ · v = tr(D) = 0.
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where ⊗ denotes the outer vector product (yielding a second-order tensor), and b is a body force (e.g. gravity).
The first equation is also called the balance of momentum, while the second equation is the balance of mass.
The mass balance for an incompressible fluid is also sometimes referred to as the incompressibility constraint
and states that the velocity field is divergence-free.

For blood flow modeling it is most convenient to write the incompressible Navier-Stokes equations in cylin-
drical coordinates:

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z

− v2θ
r

+
1

ρ

∂p

∂r
− µ

ρ

(
1

r

∂

∂r

(
r
∂vr
∂r

)
+

1

r2
∂2vr
∂θ2

+
∂2vr
∂z2

− vr
r2

− 2

r2
∂vθ
∂θ

)
− br = 0, (15)

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

− vrvθ
r

+
1

ρ

∂p

∂r
− µ

ρ

(
1

r

∂

∂r

(
r
∂vθ
∂r

)
+

1

r2
∂2vθ
∂θ2

+
∂2vθ
∂z2

− vθ
r2

+
2

r2
∂vr
∂θ

)
− bθ = 0, (16)

∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

+
1

ρ

∂p

∂z
− µ

ρ

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

)
− bz = 0, (17)

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

= 0. (18)

4 Blood flow models

4.1 Fully developed flow in rigid vessels

We start with the incompressible Navier-Stokes for a Newtonian fluid in cylindrical coordinates, neglect external
body forces (gravity), and assume vθ = 0, ∂θ(·) = 0 (circumferential velocity component and derivatives),
leaving us with two momentum balances for radial and axial velocity components vr and vz and a volume
balance equation (dividing the mass balance equation by the density ρ),

∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

+
1

ρ

∂p

∂r
− µ

ρ

(
1

r

∂

∂r

(
r
∂vr
∂r

)
+
∂2vr
∂z2

− vr
r2

)
= 0, (19)

∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

+
1

ρ

∂p

∂z
− µ

ρ

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

)
= 0, (20)

1

r

∂(rvr)

∂r
+
∂vz
∂z

= 0. (21)

For fully developed flow and rigid vessel walls, we make the additional assumption that the radial velocity
component vanishes,

∂p

∂r
= 0, (22)

∂vz
∂t

+ vz
∂vz
∂z

+
1

ρ

∂p

∂z
− µ

ρ

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

)
= 0, (23)

∂vz
∂z

= 0, (24)

and the combination of the latter two equations yields

∂vz
∂t

+
1

ρ

∂p

∂z
− µ

ρ

(
1

r

∂

∂r

(
r
∂vz
∂r

))
= 0, (25)

where the pressure is independent of r.

4.2 Fully developed steady flow in rigid vessels

One of the best-known simplifications for the incompressible Navier-Stokes equations describes the steady flow
in a rigid straight circular pipe. Since we will look at the steady-state solution (for instance given assuming a
steady pressure difference between the inlet and the outlet of a straight pipe section), time derivatives vanish.
Therefore, Eq. (25) becomes
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1

r

∂

∂r

(
r
∂vz
∂r

)
=

1

µ

∂p

∂z
. (26)

Recalling that the pressure is only a function of z, we can solve for vz by integrating twice∫
∂

∂r

(
r
∂vz
∂r

)
dr =

∫
1

µ

∂p

∂z
rdr, (27)

r
∂vz
∂r

=
1

2µ

∂p

∂z
r2 + C1, (28)

for r = 0, we get C1 = 0, thus

∂vz
∂r

=
1

2µ

∂p

∂z
r, (29)

vz =
1

4µ

∂p

∂z
r2 + C2, (30)

and the constant C2 is determined by assuming a no-slip boundary condition at r = R, i.e. vz(R) = 0, yields

C2 = − 1

4µ

∂p

∂z
R2 ⇒ vz(r) = −R

2

4µ

∂p

∂z

[
1−

( r
R

)2]
. (31)

The average velocity found by integration over a cross-section

vz = − 1

πR2

1

4µ

∂p

∂z

2π∫
0

R∫
0

[
1−

( r
R

)2]
rdrdθ = − 1

2µ

∂p

∂z

[
1

2
r2 − 1

4

r4

R2

]R
0

(32)

= −R
2

8µ

∂p

∂z
=

1

2
vz(0) :=

1

2
vmax, (33)

and the flow rate Q is given by Q = Avz = πR2vz, for a circular cross-section, which gives the well-known
Hagen-Poiseuille law, relating flow rate and pressure gradient in a straight tube

Q = −πR
4

8µ

∂p

∂z
. (34)

4.3 Fully developed pulsatile flow in rigid vessels

In this section, we analyze pulsatile pipe flow in a rigid vessel, explain how the Womersley number appears in
the dimensional analysis of the governing equations, and derive Womersley’s well-known analytical solution for
velocity profiles when the flow is driven by oscillating pressure gradients. We start with equation Eq. (25) from
the previous section. This time, we are interested in how the velocity profile evolves with time and therefore
cannot neglect the time derivative in Eq. (25).

We can arrive at a non-dimensional form of Eq. (25) by introducing the dimensionless quantities z∗ = z/R,
t∗ = tω, v∗z = vz/V , p∗ = pR/(µV ), where R (m) is a characteristic length scale (here we choose a characteristic
vessel radius), ω is a characteristic angular frequency (s−1), and V (m s−1) is a characteristic velocity of the
system,

Wo2
∂v∗z
∂t∗

+
∂p∗

∂z∗
− 1

r∗
∂

∂r∗

(
r∗
∂v∗z
∂r∗

)
= 0, (35)

where we introduced the Womersley number Wo := R (ωρ/µ)
1
2 . (Verifying the step from Eq. (25) to Eq. (35)

is a good exercise.)
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We can now look at the two terms involving v∗z and see that there are two limit cases. In the case Wo ≫ 1,
Eq. (25) can be reduced to

∂vz
∂t

+
1

ρ

∂p

∂z
= 0, (36)

while in the case Wo ≪ 1, Eq. (25) reduces to

1

ρ

∂p

∂z
− µ

ρ

(
1

r

∂

∂r

(
r
∂vz
∂r

))
= 0. (37)

To understand the meaning of the limit cases as well as the case of moderate Womersley numbers, Eq. (35),
we will choose a harmonic periodically oscillating pressure gradient

∂p

∂z
= P ′eiωt = P ′ (cosωt+ i sinωt) (38)

where P ′ is the magnitude of the axial pressure gradient, and therefore look for a harmonic velocity solution of
the form

vz(r, t) = Vz(r)e
iωt = Vz(r) (cosωt+ i sinωt) . (39)

Inserting these functions into the equations and taking their real part will give us a solution for the velocity
profile corresponding to this oscillating pressure gradient. Note that although we look at a profile with a single
frequency f = ω/(2π), we can construct arbitrary periodic solutions by superposition since Eq. (25) is linear in
vz and p.

4.3.1 The case Wo ≫ 1

Inserting Eqs. (38) and (39) into Eq. (36) yields

Vz = − 1

ρωi
P ′, ⇒ vz(t) = − 1

ρωi
P ′eiωt, (40)

and taking the real parts of the velocity profile and the pressure gradient yields

ℜ(vz(t)) = − 1

ρω
P ′ sinωt, ℜ

(
∂p

∂z

)
= P ′ cosωt. (41)

For this simple configuration, we could have directly started with the real part of the pressure gradient without
difficulty. However, we use complex numbers here to prepare for the more general case below where separating
real and imaginary part would lead to a much more cumbersome representation of the solution. This means the
velocity does not depend on the radial position (plug flow profile) and its phase is shifted by 90° with respect
to the pressure gradient. This flow configuration can be characterized as fully inertia-dominated.

4.3.2 The case Wo ≪ 1

Inserting Eqs. (38) and (39) into Eq. (37) multiplying with r and dividing by µ yields

1

µ
P ′r =

∂

∂r

(
r
∂Vz
∂r

)
= r

∂2Vz
∂r2

+
∂Vz
∂r

, (42)

integrating once (using integration by parts) gives

1

2µ
P ′r2 = r

∂Vz
∂r

+ C1, (43)

Since the radial derivative of the velocity is zero in the middle of the channel (r = 0), C1 = 0. Dividing by r
again and integrating once more yields

Vz(r) =
1

4µ
P ′r2 + C2, (44)
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and finally by using a no-slip condition on the outer wall (Vz(r = R) = 0), we arrive at

Vz(r) = − 1

4µ
P ′(R2 − r2), ⇒ vz(r, t) = − 1

4iµ
(R2 − r2)P ′eiωt. (45)

Taking the real parts of the velocity profile and the pressure gradient yields

ℜ(vz(r, t)) = − 1

4µ
(R2 − r2)P ′ cosωt, ℜ

(
∂p

∂z

)
= P ′ cosωt. (46)

This is the well-known Poiseuille flow velocity profile (parabolic profile). Velocity and pressure gradient are
180° out of phase which essentially just means that a negative pressure gradient leads to a positive velocity and
vice versa. This flow configuration can be characterised as fully friction dominated, i.e. dominated by viscous
forces. Again, we could have worked directly with the real part of the pressure gradient ansatz.

4.3.3 The case of arbitrary Wo

The solution for arbitrary Womersley numbers has been derived by John R. Womersley in [19]. To this end, we
insert Eqs. (38) and (39) into Eq. (25),

µ

ρ

(
1

r

∂

∂r

(
r
∂Vz
∂r

))
− ωiVz =

1

ρ
P ′, (47)

⇒ ∂2Vz
∂r2

+
1

r

∂Vz
∂r

+
ρωi3

µ
Vz =

1

µ
P ′, (48)

where we used i2 = −1. Equation (48) is linear in Vz, therefore we may seek the solution as a combination of
the homogeneous solution and a particular solution. Let us first consider the homogeneous solution, i.e. the
solution to

∂2Vz
∂r2

+
1

r

∂Vz
∂r

+
ρωi3

µ
Vz = 0. (49)

If we multiply Eq. (49) with r2 and make the substitution s = r(ρωi3/µ)
1
2 (note that ∂s/∂r = (ρωi3/µ)

1
2 ),

⇒ r2
∂2Vz
∂r2

+ r
∂Vz
∂r

+ r2
ρωi3

µ
Vz = 0, (50)

⇒ r2
∂2Vz
∂s2

(
∂s

∂r

)2

+ r
∂Vz
∂s

∂s

∂r
+ r2

ρωi3

µ
Vz = 0, (51)

⇒ s2
∂2Vz
∂s2

+ s
∂Vz
∂s

+ s2Vz = 0, (52)

we obtain Bessel’s differential equation (of order zero). Its solution is called Bessel function of the first kind of
order zero, denoted by J0(s), and can be written as the infinite series expansion [1]:

J0(s) =

∞∑
m=0

(−1)m

m!m!

(s
2

)2m
. (53)

Next, we guess a particular solution as V ⋄
z = − 1

ρωiP
′ and verify that it indeed solves the inhomogeneous equation

(48), which is simple since V ⋄
z is independent of r. Therefore, the full solution may be determined as

Vz(r) = CJ0(s(r)) + V ⋄
z , (54)

with a constant C that can be determined by inserting the no-slip boundary condition on the vessel wall,

Vz(R) = 0 = CJ0(s(R))−
1

ρωi
P ′ ⇒ C =

1

ρωi
P ′J0(s(R))

−1. (55)

Finally, we obtain the velocity profile Vz(r) and the axial velocity vz(r, t) as the real part of the complex solution,

Vz(r) = − P ′

ρωi

(
1− J0(s(r))

J0(s(R))

)
, ℜ(vz(r, t)) = ℜ

(
− P ′

ρωi

(
1− J0(s(r))

J0(s(R))

)
eiωt

)
, (56)
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respectively. Substituting s for its expression in terms of r, formulation in terms of the dimensionless radius
r∗ = r/R and the dimensionless time t∗ = tω, and using the definition of the Womersley number, we obtain

ℜ(vz(r∗, t∗)) = ℜ
(
− P ′

ρωi

(
1− J0(Woi

3
2 r∗)

J0(Woi
3
2 )

)
eit

∗

)
, ℜ

(
∂p

∂z

)
= P ′ cos t∗. (57)

The resulting profiles (the well-known Womersley profiles) are plotted in Fig. 1, c.f. [20, Fig.1]. For low
Womersley number (Wo = 2), the phase shift between pressure gradient and velocity is 90° and the profile
looks parabolic (Poiseuille flow). For intermediate Womersley numbers, it can be observed that the flow is still
friction-dominated close to the vessel wall while the flow in the middle of the channel is increasingly dominated
by inertial forces. The friction-dominated boundary layer decreases in thickness as the Womersley number
increases.

1 0 1
p/ z, P ′ = 1

0°
15°
30°
45°
60°
75°
90°

104°
120°
135°
150°
165°
180°
195°
209°
224°
240°
254°
270°
285°
300°
315°
330°
345°
360°

1.0 0.5 0.0 0.5 1.0
r * = r/R

Wo = 2

1.0 0.5 0.0 0.5 1.0
r * = r/R

Wo = 4

1.0 0.5 0.0 0.5 1.0
r * = r/R

Wo = 8

1.0 0.5 0.0 0.5 1.0
r * = r/R

Wo = 16

Figure 1: Oscillating pipe flow in a rigid vessel. Velocity profiles overpressure gradient for different Wom-
ersley numbers. The figure can be reproduced with the Python script plot womersley.py.

4.4 Pulsatile flow in elastic vessels

Similar solutions than for rigid vessel can also be derived for elastic tube assuming small deformations and a
few other restrictions, see e.g. [20]. This might be discussed here in more detail in the future.
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4.5 1D models for flow in elastic vessels

In the following, we want to proceed with deriving 1D models for flow in elastic vessels. These models are
obtained by reformulating the full Navier-Stokes equations in terms of cross-section averaged quantities using
some simplifications. Such models are sometimes called quasi 1D models since the modeled geometric domain
is still a three-dimensional tube, however the resulting PDEs after model reduction are one-dimensional in
space and only dependencies on the axial coordinate appear explicitly. Due to the dimensional reduction of the
resulting PDE, the equations can be solved numerically much more efficiently (less discrete degrees of freedom)
than fully three-dimension flow models. We will loosely follow the derivations of 1D models presented by Čanić
and Kim [21], and Quarteroni and Formaggia [16].

4.5.1 Assumptions

To develop one-dimensional models, we start with several basic assumptions. The system is assumed to be
radially symmetric, that is all quantities are independent of the circumferential coordinate. The cross-section
S(z, t) of the vessel at axial position z is circular at all times and can be described by

A(z, t) = |S(z, t)| = πR2(z, t), (58)

where R is the radius function, and by A = |S|, we mean that the area A is the measure of the section S. The
dominant velocity component in axial direction can be described by

vz(r, z, t) = v̄(z, t)s(r∗), v̄ :=
1

A

∫
S

vzdA (59)

where s is the dimensionless velocity profile (r∗ = r/R(z, t)) and v̄ the average cross-sectional velocity. Fur-
thermore, the mean volume flux Q is defined as

Q(z, t) :=

∫
S

vzdA = Av̄. (60)

Displacements only occur radially and we neglect body forces. Finally, the pressure p is assumed to be constant
per cross-section. We start the derivation with Eqs. (19) to (21), that is the incompressible Navier-Stokes
equations in cylinder coordinates, neglecting the circumferential velocity components and gradients.

4.5.2 Mass balance equation

Under the stated assumptions, the mass balance equation is given by Eq. (21). Integration over the cross-section
S(z, t) yields ∫

S

1

r

∂(rvr)

∂r
dA+

∫
S

∂vz
∂z

dA = 0. (61)

We recall that the area element in cylinder coordinates is dA = r drdθ. Hence, for the first integral we have

∫
S

1

r

∂(rvr)

∂r
dA =

2π∫
0

R∫
0

∂(rvr)

∂r
drdθ = 2πR vr(R, t)︸ ︷︷ ︸

=∂R/∂t

= 2πR
∂R

∂t
=
∂(πR2)

∂t
=
∂A

∂t
, (62)

where we used the definition of the area, the product rule, and the boundary condition ur(R, t) = ∂R/∂t,
that is the radial fluid velocity component at the vessel wall (r = R) is equal to the wall deformation velocity
Ṙ ≡ ∂R/∂t.

For the second term, we apply Leibniz’ rule for parameter integrals which is a rule to evaluate integrals with
variable bounds and reads for a scalar function f(z, r, t) and variable lower and upper bounds a(z) and b(z),

d

dz

(∫ b(z)

a(z)

f(z, r, t)dr

)
=

∫ b(z)

a(z)

∂

∂z
f(z, r, t)dr + f(z, b(z), t)

d

dz
b(z)− f(z, a(z), t)

d

dz
a(z). (63)
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The total derivative of the integral expression is composed of a part where we think of the integration bounds
as constants and a second part that evaluates the change due to the change of the integration bounds only. By
choosing a function

g(z, r, t) :=

∫ 2π

0

vzrdθ = 2πvzr, (64)

we can see that in our case the Leibniz rule yields (exchanging terms between right-hand-size and left-hand-side)

∫
S

∂uz
∂z

dA =

R(z)∫
0

2π∫
0

∂uz
∂z

r dθdr =

R(z)∫
0

∂

∂z

 2π∫
0

uzrdθ

 dr =

R(z)∫
0

∂g

∂z
dr

=
d

dz

 R(z)∫
0

gdr

− g(z,R(z), t)
dR(z)

dz
+ g(z, 0, t)

d0

dz

=
d

dz

(∫
S

uz dA

)
− 2πRuz(t, R)︸ ︷︷ ︸

=0

∂R

∂z

=
∂Q

∂z
, (65)

where we used the definition of Q and that the axial velocity is zero on the vessel wall (no-slip boundary
condition).

In summary, with Eqs. (62) and (65), we obtain a one-dimensional mass balance equation in terms of the
cross-sectional area A(z, t) and the flow rate Q(z, t) as

∂A

∂t
+
∂Q

∂z
= 0. (66)

4.5.3 Momentum balance equations

A detailed derivation might be added here at some point. For the mean time, we refer to the mentioned reference
[16, ch.6] and state here only the result, that is the momentum balance equation

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+
A

ρ

∂p

∂z
+KR

Q

A
= 0, (67)

where the dimensionless momentum correction coefficient α encodes the effect of the velocity profile on the
nonlinear term and is defined by

α :=

∫
S
v2zdA

Av̄2
=

1

A

∫
S

s2dA, (68)

and KR is the friction function. When assuming a power-law-type velocity profile,

vz(r, z, t) = v̄(z, t)s(r∗) = v̄(z, t)
γ + 2

γ
[1− (r∗)

γ
] = v̄(z, t)

γ + 2

γ

[
1−

( r
R

)γ]
, (69)

KR and α are given by

KR = −2π
µ

ρ
s′(1) = 2π

µ

ρ
(γ + 2), γ =

2− α

α− 1
(70)

where γ = 2 corresponds to a parabolic profile (Poiseuille flow). For the parabolic profile, α = 4/3, while for
a more flat power-law type profile that is closer to blood flow profiles observed in-vivo, e.g. γ = 9 ⇒ α = 1.1.
To simplify the model analysis, it is often assumed that α = 1 although this corresponds to a completely flat
velocity profile (γ → ∞).
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4.5.4 Closure model

Summarizing the above derivation, flow in elastic tubes may be derived by the following reduced 1D model

∂A

∂t
+
∂Q

∂z
= 0, (71a)

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+
A

ρ

∂p

∂z
+KR

Q

A
= 0. (71b)

On close observation, we see that we have three variables, (Q,A, p), but only two equations. To close the system,
that is make the system uniquely solvable, we provide a relation between A and p that essentially models the
fluid-structure interaction at the vessel wall. Here, we suggest a simple algebraic relationship, see e.g. [3],

p(z, t) = Pext + ψ(A,A0, G0) = Pext +G0

(√
A

A0
− 1

)
= Pext +

√
πh0E

(1− ν2)
√
A0

(√
A

A0
− 1

)
, (72)

where E(z) denotes Young’s modulus (in Pa), ν is the Poisson ratio (ν = 0.5 assuming an incompressible
material), A0(z) is the initial cross-sectional area (for p = 0), and h0(z) is thickness of the vessel wall. The
external pressure Pext is the pressure of the extra-vascular tissue. The constant

G0 :=

√
πh0E

(1− ν2)
√
A0

(73)

describes the effective material behavior.

4.5.5 Derivation of the closure model

We can derive the simple algebraic relationship in Eq. (72) from linear elasticity theory (small deformations).
This means that we model the arterial wall using the constitutive equations for a (generalized) Hookean material
(isotropic, linear-elastic) to relate stresses σ and (infinitesimal) strains ϵ = 1

2

(
∇u+∇Tu

)
, denoting with u

the displacement. The momentum equations (also called equations of motion), neglecting external body forces,
in cylinder coordinates (r, θ, z) are given by

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = ρs

∂2ur
∂t2

, (74a)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ = ρs

∂2uθ
∂t2

, (74b)

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz = ρs

∂2uz
∂t2

, (74c)

where ρs denotes the density of the vessel wall. Matching the assumptions for the 1D model, we seek a symmetric
solution such that ∂/∂θ = 0. Furthermore, we will assume quasi-static conditions such that ∂2u/∂t2 ≈ 0,
yielding

∂σrr
∂r

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = 0, (75a)

∂σrθ
∂r

+
∂σθz
∂z

+
2

r
σrθ = 0, (75b)

∂σrz
∂r

+
∂σzz
∂z

+
1

r
σrz = 0. (75c)

The strain-displacement relation in cylinder coordinates is given by

ϵ =
1

2

(
∇u+∇Tu

)
=

1

2

 2∂ur

∂r

(
1
r
∂ur

∂θ + ∂uθ

∂r − uθ

r

) (
∂ur

∂z + ∂uz

∂r

)(
1
r
∂ur

∂θ + ∂uθ

∂r − uθ

r

)
2
r

(
∂uθ

∂θ + ur
) (

∂uθ

∂z + 1
r
∂uz

∂θ

)(
∂ur

∂z + ∂uz

∂r

) (
∂uθ

∂z + 1
r
∂uz

∂θ

)
2∂uz

∂z

 (76)

=
1

2

 2∂ur

∂r

(
∂uθ

∂r − uθ

r

) (
∂ur

∂z + ∂uz

∂r

)(
∂uθ

∂r − uθ

r

)
2ur

r
∂uθ

∂z(
∂ur

∂z + ∂uz

∂r

)
∂uθ

∂z 2∂uz

∂z

 (77)
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where we used again the assumption of axial symmetry in the second equality. The constitutive relations for a
Hookean material relate strain and stress as

ϵij =
1

E
[(1 + ν)σij − νδijσkk] , (78)

with Young’s modulus E, Poisson ratio ν, and the usual Kronecker symbol δij (1 if i = j and 0 otherwise). For
ν < 0.5, we can invert the relation, and obtain stresses in terms of strains,

σij =
E

(1 + ν)

[
ϵij +

ν

(1− 2ν)
δijϵkk

]
. (79)

A simple force balance at a vessel cross-section at two virtual cuts (one through an axial symmetry plane and

Figure 2: A radial and circumferential cut through a vessel to visualize the forces.

one along the fluid-wall interface, see Fig. 2) shows that

Fpθ = 2R0p = 2h0σθθ = Fσθ and Fpr = πR0p = −πR0σrr = Fσr (80)

⇒ σθθ =
pR0

h0
⇒ σrr = −p (81)

If we assume that h0 ≪ R0, we have that σrr ≪ σθθ and on an axial vessel section, we can estimate that
σrr ≪ σzz. We call the situation where the normal stress in one direction is much smaller than in the other
direction a plane stress state (here: σrr ≈ 0). For a resting fluid at pressure p, we can directly compute
σzz = −pR0

2h0
from a force balance. However, when the fluid is moving, it will cause an additional shear force at

the fluid-wall interface depending on the velocity profile and fluid material properties. To simplify our model,
we will instead make the additional assumption that the vessel is pre-streched in the axial direction and axial
displacements are negligibly small and hence ϵzz ≈ 0.

From Eq. (78), we have

ϵθθ =
1

E
[σθθ − ν (σrr + σzz)] ≈

1

E
[σθθ − νσzz] , (82)

ϵzz =
1

E
[σzz − ν (σθθ + σrr)] ≈

1

E
[σzz − νσθθ] ≈ 0. (83)

Inserting the second in the first equation eliminates the dependence of ϵθθ on σzz (which is non-zero in this
model),

ϵθθ ≈ 1

E

[
σθθ − ν2σθθ

]
=

(1− ν2)

E
σθθ =

(1− ν2)

E

pR0

h0
. (84)

So far we have assumed that p is the overpressure with respect to some reference pressure outside the vessel.
By replacing p with ∆p = p− Pext, we can generalize our considerations for a given non-zero external pressure
Pext. Then, solving Eq. (84) for p, we obtain

p = Pext +
Eh0

(1− ν2)R0
ϵθθ = Pext +

Eh0
(1− ν2)R0

R−R0

R0
= Pext +

√
πEh0

(1− ν2)
√
A0

(√
A

A0
− 1

)
(85)

where we used Eq. (77) and A0 = πR2
0.
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4.5.6 Conservative form

Theorem 1 (Conservative form). Equations (71a), (71b) and (72) can be written in conservation form

∂U

∂t
+
∂F (U)

∂z
+ S(U) = 0, where U =

[
A
Q

]
(86)

are the conserved quantities and the flux and source functions are given by

F (U) =

[
Q

αQ2

A + C1

]
, S(U) =

[
0

KR
Q
A + A

ρB1 −B2

]
, C1 :=

A∫
A0

c21(Ã)dÃ, c1 :=

√
A

ρ

∂ψ

∂A
, (87)

B1 :=
∂ψ

∂A0

∂A0

∂z
+

∂ψ

∂G0

∂G0

∂z
, B2 :=

∂C1

∂A0

∂A0

∂z
+
∂C1

∂G0

∂G0

∂z
. (88)

Proof. The mass balance equation Eq. (71a) is already in conservative form and is the first component of the
vector-valued representation. Using the definition of the pressure and the functions c1 and B1, we have

A

ρ

∂p

∂z
=
A

ρ

∂ψ

∂z
=
A

ρ

(
∂ψ

∂A

∂A

∂z
+

∂ψ

∂A0

∂A0

∂z
+

∂ψ

∂G0

∂G0

∂z

)
(89)

= c21
∂A

∂z
+
A

ρ

(
∂ψ

∂A0

∂A0

∂z
+

∂ψ

∂G0

∂G0

∂z

)
= c21

∂A

∂z
+
A

ρ
B1, (90)

by chain rule. Moreover, we have

∂C1

∂z
=
∂C1

∂A

∂A

∂z
+
∂C1

∂A0

∂A0

∂z
+
∂C1

∂G0

∂G0

∂z
, (91)

and

∂C1

∂A
=

∂

∂A

 A∫
A0

c21(Ã)dÃ

 =
∂ (F (A)− F (A0))

∂A
= c21(A), (92)

where F (A) denotes the antiderivative of c21(A) for which we know by definition that ∂F/∂A = c21. Inserting
Eq. (92) into Eq. (91) yields

c21
∂A

∂z
=
∂C1

∂z
−
(
∂C1

∂A0

∂A0

∂z
+
∂C1

∂G0

∂G0

∂z

)
=
∂C1

∂z
−B2, (93)

and inserting Eq. (93) into Eq. (90) finally yields the expression needed to show the equality proposed in the
theorem,

A

ρ

∂p

∂z
=
∂C1

∂z
+
A

ρ
B1 −B2. (94)

For the area-pressure relationship in Eq. (72), we have

c1 =

√√
A

A0

G0

2ρ
=

√
G0

2ρ

(
A

A0

) 1
4

, C1 =

A∫
A0

G0

2ρ

(
Ã

A0

) 1
2

dÃ =
G0

3ρ
A0

((
A

A0

) 3
2

− 1

)
. (95)

The function c1 has units of m s−1 and has physical significance as a characteristic pressure wave propagation
speed of the system.

The equations simplify considerably if A0 and G0 can be assumed to be constants (independent of z). Then,

F (U) =

[
Q

αQ2

A + C1

]
=

 Q

αQ2

A + G0

3ρA0

(
A
A0

) 3
2

 , S(U) =

[
0

KR
Q
A

]
. (96)

Note that in the second equality, when inserting the expression for C1, we dropped the constant bit which has
a zero derivative with respect to z.
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4.6 Linearized 1D model

Equations (71a), (71b) and (72) constitute a nonlinear model in the primary variables A and Q. A simplified
model can be obtained in the case of small deformations and flow rates. Such a model is interesting for modelling
flow in smaller vessels. Any nonlinear function can be approximated locally around a given point by a linear
function (taking the first two terms of the Taylor series developed at that point). In the following, we linearize

the functions F (U) and S(U) around U0 = [A0, 0]
T
(cf. [11]). To this end, we introduce new state variables a

and q as perturbations from the base state U0 such that

U =

[
A
Q

]
=

[
A0

0

]
+

[
a
q

]
= U0 +U1 (97)

We start with the Taylor series expansion of F (U) around U0, given by

F (U) = F (U0) + JF (U0)(U −U0) +O(U2) = F (U)(U0) + JF (U0)U1 +O(U2) (98)

where JF = ∂Fi/∂Uj denotes the Jacobian matrix. We neglect all quadratic and higher order terms.

F (U) ≈ F (U0) + JF (U0)U1 = 0+

[
0 1
G0

2ρ 0

] [
a
q

]
(99)

We do the same for the source term, arriving at

S(U) ≈ S(U0) + JS(U0)U1 = 0+

[
0 0
0 KR

A0

] [
a
q

]
. (100)

Replacing the nonlinear flux and source term by their linear approximations, we obtain the linear equation
system

∂a

∂t
+
∂q

∂z
= 0, (101a)

∂q

∂t
+

∂

∂z

(
G0

2ρ
a

)
+KR

q

A0
= 0, (101b)

in terms of the variables a and q. The linearized area-pressure relationship

p(A) ≈ p(A0) +
∂p

∂A
a = Pext +

G0

2A0
a, (102)

gives us a way to reformulate the equation system in terms of p and q

2A0

G0

∂p

∂t
+
∂q

∂z
= 0, (103a)

∂q

∂t
+

∂

∂z

(
A0

ρ
p

)
+KR

q

A0
= 0. (103b)

An often made analogy is between flow in vascular networks and electrical circuits. In this analogy, pressure (p)
corresponds to voltage, flow rate (q) to current, compliance (C1D) to capacitance, inertance (L1D) to inductance,
and viscous friction (R1D) to electrical resistance. For the following, we will assume that A0 is constant along
a given vessel segment (independent of z). Defining the quantities

C1D :=
2A0

G0
=

A0

ρc21(A0)
, L1D :=

ρ

A0
, R1D :=

ρKR

A2
0

, (104)

we can rewrite the linearized 1D model once more, yielding (cf. [11])

C1D
∂p

∂t
+
∂q

∂z
= 0, (105a)

L1D
∂q

∂t
+
∂p

∂z
+R1Dq = 0. (105b)

It can be seen from the equations and where the defined parameters appear that C1D (compliance) scales how
much blood volume can be stored by pressure-driven elastic deformation, L1D (inertance) scales how fast the
system allows changes in the flow rate, and R1D (resistance) determines the influence of viscous friction. All
quantities appear in a length-specific unit (i.e. per meter vessel length).
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4.7 0D lumped-parameter model

We can derive an even simpler model, if changes along the axial direction are considered to propagate fast. In
following, we first imagine a single vessel of constant length L modeled by the 1D model of the previous section
with parameters C1D, L1D, R1D, A0, G0 that are constant along the vessel. We integrate Eq. (105) along the
vessel, yielding

C0D
∂p̂

∂t
+ qo − qi = 0, (106a)

L0D
∂q̂

∂t
+ po − pi +R0Dq̂ = 0. (106b)

where we defined

p̂(t) :=
1

L

L∫
0

p(z, t)dz, q̂(t) :=
1

L

L∫
0

q(z, t)dz, C0D := C1DL, L0D := L1DL, R0D := R1DL, (107)

and qi, pi denote flow rate and pressure at the inlet (z = 0) and qo, po denote flow rate and pressure at the
outlet (z = L) of the vessel.

Let us now assume that we know some given boundary conditions, for example for pi (pressure at inlet) and
qo (flow rate at outlet). Then, Eq. (106) is a system of two equations and four unknowns (po, qi, p̂, q̂). That
means, to solve our system we need two closure relation. We follow Milǐsić and Quarteroni [11] and make the
major assumption that p̂ = po and q̂ = qi. This is justified by the observation that since pressure and flow rate
do not change much along the vessel (this was already assumed to derive the 1D model), the vessel averages p̂
and q̂ will be very close to the end point values. Inserting the closure conditions, yields with

C0D
∂po
∂t

− qi = −q0, (108a)

L0D
∂qi
∂t

+ po +R0Dqi = pi, (108b)

a solvable equation system in terms of the unknowns (po, qi).
Note that for other boundary conditions, e.g. given po and qi, we might have chosen the other end points

to approximate the averages. This yields a similar but slightly different 0D model.
We can imagine a vessel modeled this way in terms of the following electrical circuit diagram. The position

pi, qi
L0D R0D

po, qo

C0D

Pext

of the capacitor depends on whether the closure relation assumes p̂ to be equal to the inlet or the outlet pressure,
and we show here the case p̂ ≈ po. More details can be found, for example, in [11].

0D model as boundary condition for 1D models. We may also interpret the model given by Eq. (106)
more loosely as applying the an entire section of the vascular network. In this interpretation, the coefficients
C0D, L0D, R0D loose their direct compatibility with the coefficients for a single vessel segment but are to be
understood in the same physical meaning representing compliance, inertance, and friction of the represented
part of the vascular network. We call this approach lumped parameter approach, since the coefficients of an
entire group of vessels is lumped into a single coefficient. Interpreted in this way, the 0D model is useful to
define meaningful boundary conditions for 1D models, so that we do not have to explicitly represent the entire
vascular network tree.

4.8 1D and 0D models for non-pulsatile flow in small vessels

In smaller vessel, it can be a good assumption that possible pressure changes only occur over long time scales
much larger than the fluctuations of the heart beat. Due to the compliance of the upstream vessels (Windkessel
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effect), fluctuations in the flow rate are small and we have quasi-steady-state conditions, i.e. ∂q/∂t = 0. Flow
is described well by the Stokes equations. We may therefore use the following simplified 1D model:

C1D
∂p

∂t
+
∂q

∂z
= 0, (109a)

∂p

∂z
+R1Dq = 0. (109b)

The equations may be combined into a single equation

C1D
∂p

∂t
− 1

R1D

∂p2

∂z2
= 0. (110a)

Again, we can also derive a 0D model by integration over the axial direction and obtain

C0D
∂p̂

∂t
+ qo − qi = 0, (111a)

po − pi +R0Dq̂ = 0, (111b)

which corresponds to a simplified electrical circuit. The position of the capacitor depends on whether the closure

pi, qi

R0D

po, qo

C0D

Pext

relation assumes p̂ to be equal to the inlet or the outlet pressure, and we show here the case p̂ ≈ pi. More
details can be found, for example, in [11].

4.9 Tube flow in (leaky) capillary vessels

In the capillaries, there are several particularities to consider. First, as the red blood cell diameter approaches
the vessel diameter, two-phase effects need to be considered. To this end, we may use a model for the apparent
viscosity accounting for the strongly non-Newtonian behaviour of blood at this scale. Moreover, we can model
additional phase separation effects (F̊ahræus effect, Zweifach-Fung bifurcation rule) by accounting for variable
hematocrit, or by modeling the two phases separately. The two-phase model with explicit red blood cell tracking
and variable hematocrit will not be discussed here. Secondly, capillaries exchange fluids, solvents and particles
with the surrounding extra-vascular space over the vessel wall.

We start the derivation with Eqs. (19) to (21), that is the incompressible Navier-Stokes equations in cylinder
coordinates, neglecting the circumferential velocity components and gradients. Because we have assume small
Reynolds numbers (Re ≪ 1), we can neglect the nonlinear terms and inertial terms, arriving at the following
form of the Stokes equations

1

ρ

∂p

∂r
− µ̂B

ρ

(
1

r

∂

∂r

(
r
∂vr
∂r

)
+
∂2vr
∂z2

)
= 0, (112)

1

ρ

∂p

∂z
− µ̂B

ρ

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

)
= 0, (113)

1

r

∂(rvr)

∂r
+
∂vz
∂z

= 0, (114)

where m̂uB is the apparent dynamic viscosity (in Pa s) and accounts for non-Newtonian effects. For the mass
balance Eq. (114), we start as in Section 4.5.3 by integration over the cross-section S(z, t),∫

S

1

r

∂(rvr)

∂r
dA+

∫
S

∂vz
∂z

dA = 0. (115)
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Then, for the first integral we find that

∫
S

1

r

∂(rvr)

∂r
dA =

2π∫
0

R∫
0

∂(rvr)

∂r
drdθ = 2πRvr(z,R), (116)

where we used integration by parts. Different from the large vessel, we now make the assumption that the area
A is constant in time, i.e. A = A0. However, the vessel wall is assumed to be leaky, that is fluid can cross the
vessel wall with the velocity vr(z,R) := vR(z). The second term is treated the same way as in Section 4.5.3 and
we arrive at

∂Q(z)

∂z
= −2πRvR(z). (117)

We note that the mass balance my be derived under less restrictive assumption, that is without assuming
radially symmetry velocity profiles. Then, vR corresponds to the average radial velocity on the cross-section
perimeter. The terms in the momentum balance equations are treated the same way as for the 1D model for
pulsatile flow, arriving at a similar model,

A0

ρ

∂p

∂z
+KR

Q

A0
= 0 ⇒ Q = − A2

0

ρKR

∂p

∂z
, (118)

which can be solved for Q and inserted into Eq. (117),

− ∂

∂z

(
A2

0

ρKR

∂p

∂z

)
= −2πRvR(z), (119)

obtaining a stationary single equation model in terms of the fluid pressure p(z). Assuming a power-law type
velocity profile, we have

− ∂

∂z

(
ρ

µB

πR4

2(γ + 2)

∂p

∂z

)
= −ρ2πRvR(z), (120)

where µB is the mean apparent dynamic viscosity. To solve Eq. (120) in terms of p(z), we need to find closure
relations defining µB and vR(z).

4.9.1 Apparent viscosity in small vessels

An empirical model for the apparent viscosity in small vessels based on in-vitro experimental data (in glass
tubes) from several studies has been proposed by Pries et al. [13]. It provides a relationship for the apparent
viscosity depending on the vessel diameter and the tube hematocrit, HT . Due to the F̊ahræus effect, the
tube hematocrit HT differs from the discharge hemtocrit HD (bulk blood hematocrit in a reservoir), and the
relationship proposed by [12] is

HT

HD
= HD + (1−HD)

(
1 + 1.7e−0.415D − 0.6e−0.011D

)
, (121)

where D = 2R is the vessel diameter. This was obtained for human blood samples where the mean red blood
cell volume is V hum

RBC = 92× 10−18 m3 = 92 fL. According to Pries and Secomb [15], a relation for other species
with different red blood cell volume may be obtained by multiplying the vessel diameters in the equation by a
factor (V hum

RBC/V
s
RBC)

1/3. For rat blood with V rat
RBC = 55 fL, this gives a factor of 1.187 [12].

The apparent dynamic viscosity µB is given by

ηvitro :=
µvitro
B

µP
= 1 + (ηvitro0.45 − 1)

(1−HD)C − 1

(1− 0.45)C − 1
, (122)

ηvitro0.45 (D) = 220e−1.3D − 2.44e−0.06D0.645

+ 3.2, (123)

C(D) = (0.8 + e−0.075D)

(
1

1 + 10−11D12
− 1

)
+

1

1 + 10−11D12
, (124)
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Figure 3: Relative apparent dynamic viscosity in the microvasculature depending on vessel diameter and
discharge hematocrit according to the empirical in-vitro model found by Pries et al. [12] (left) and the
empirical in-vivo model proposed by Pries et al. [14] scaled for human blood with mean red blood cell
volume V hum

RBC = 92 fL. The figure can be reproduced with the Python script plot viscosity.py.

where η0.45 is the relative apparent viscosity at a discharge hematocrit of HD = 0.45, C is a scaling function,
and µP is the dynamic viscosity of blood plasma (µP ≈ 1.1mPa s) which is modeled as a Newtonian fluid.

Due to the anatomical complexity of vessels in-vivo, in particular the existence of the so-called endothelial
surface layer that results in a apparent cell-free layer of about 0.1 µm to 2 µm, the apparent viscosity has been
found to deviate from the law proposed for glass tubes when investigated in-vivo (in living rats) [14]. Pries
et al. [14] therefore propose a scaled in-vivo viscosity law given by

ηvivo :=
µvivo
B

µP
=

[
1 + (ηvivo0.45 − 1)

(1−HD)C − 1

(1− 0.45)C − 1

(
D

D − 1.1

)2
](

D

D − 1.1

)2

, (125)

ηvivo0.45(D) = 6e−0.085D − 2.44e−0.06D0.645

+ 3.2, (126)

and C is the same as for the in-vitro law above, i.e. Eq. (124).
The apparent viscosity relationship are shown in Fig. 3. For more information on the derivation, historical

context and flow in microvascular networks in general, we refer to the review article by Pries and Secomb [15].

4.9.2 Flow across the vascular wall

The capillary wall consists mostly of the endothelial cell layer (see Fig. 4) that has various gaps and pores
depending on the type of capillary. The most common model used for fluid flow across the capillary vessel wall
is Starling’s law due to Starling [17]. It proposes that the filtration velocity vR (in m s−1) is proportional to the
hydrostatic pressure difference and the so-called oncotic pressure (an osmotic pressure exerted by large proteins
present in the blood stream such as albumin) across the vessel wall,

vR(z) = Lp(p− Pext − σw∆Π), (127)

where p denotes the fluid pressure inside the capillary, Pext is the mean fluid pressure right outside the capillary
(on the green surface in Fig. 4), Lp is the filtration coefficient (in mPa−1 s−1), ∆Π is the oncotic pressure
difference across the vessel wall, and σw is the osmotic reflection coefficient that is close to 1 for large molecules
that occur in relatively high concentrations in the blood stream such as albumin and close to 0.1 for small
molecules present in low concentration, with the notable exception of the brain where it can be mostly assumed

17



endothelial cell

red blood cell
endothelial tight junction

basement
membrane

pericyte

Figure 4: Step-wise model reduction shown for a continuous capillary. After idealizing the geometry, the
vessel wall is reduced to a sharp interface. Integration over cross-sections yields a 1D model of blood flow.
Figure reproduced from [9].

to be close to 1 [7]. Baxter and Jain [2], Jain et al. [8] estimate Lp to be between 2.4 × 10−12 mPa−1 s−1 (in
normal rat skeletal muscle capillaries) and 1.4 × 10−10 mPa−1 s−1 (in tumors). Measurements for the other
quantities in different species are, for example, summarized by Levick [10]. We can use Eq. (127) to replace vR
in the right-hand-side of Eq. (120).

5 Numerical methods

This is a brief introduction to Finite Volume Methods with the goal of showing how to discretize and solve some
of the blood flow models derived in the previous sections along vessel segments.

5.1 The Finite Volume Method

We start by looking at a simple linear scalar conservation equation,

∂c

∂t
+ div(vc) = 0, (128)

in a bounded spatial domain Ω ⊂ Rd and a time interval [0, tEnd], where c : Ω× [0, tEnd] → R denotes a scalar
concentration field that evolves over time. The concentration field is transported by advection in a bulk fluid
moving at steady velocity field v : Ω → Rd (for example, the blood flow velocity). The concentration field
is fully described by Eq. (128) together with an initial state c(x, 0) = c0(x), and boundary conditions on the
inflow boundary. We call the inflow boundary, all parts of ∂Ω (the boundary of Ω), where v ·nΩ < 0 holds. The
vector nΩ denotes the unit outward-pointing normal vector on ∂Ω. Because in the type of transport described
by Eq. (128) information only flows in one direction (the direction of the velocity field), we do not have to
prescribe any boundary conditions on the outflow boundary (v · nΩ ≥ 0). (And we cannot prescribe them
since the differential equation together with the inflow boundary conditions and initial conditions already fully
determines the solution.)

If we integrate Eq. (128) over some arbitrary control volume region K ⊆ Ω and apply the divergence theorem,∫
n

∂c

∂t
dV +

∫
n

div(vc)dV =

∫
n

∂c

∂t
dV +

∫
∂K

cv · nKdA =
d

dt

∫
n

cdV +

∫
∂K

cv · nK dA = 0, (129)

we can conclude that the total amount of the substance in control volume K only changes by the net flux over
the boundary ∂K, and therefore, it must be conserved within K. This explains the name conservation equation
or conservation law. The concentration c is the density of the conserved quantity (amount of substance).

For the Finite Volume Method (FVM), we partition the domain into a set T of (finite polytope) control
volumes K (T is often called a mesh) such that the domain

Ω =
⋃

K∈T
K, (130)
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is given by the union of all control volumes K in T . This process is called spatial discretization. An example

Figure 5: A two-dimensional mesh T of polygonal control volumes K.

domain is shown in Fig. 5. Each polytope control volume K has a set Σ of facets σ (which have dimension d−1)
that it shares either with another control volume (inner facets) or with the domain boundary (boundary facets).
For example, for one-dimensional domains (d = 1) the facets are simply the vertices of a line segment. We
also discretize the time domain by splitting the interval into a number of discrete steps starting at T0 = [t0, t1]
and denote with ∆tn = tn+1 − tn, the n-th time step size (a measure of the n-th subinterval). Moreover, we
introduce the cell averages

cK =
1

|K|

∫
K

c(x, t)dV, (131)

which will be our discrete unknowns. Note that we have one unknown cK per control volume K. Integrating
Eq. (128) in time and space over control volumes K, yields as many equations as unknowns,

tn+1∫
tn

∫
K

∂c

∂t
dV dt+

tn+1∫
tn

∫
∂K

cv · nK dAdt = 0. (132)

Exchanging the order of integration and using the definition of the cell averages yields

|K|cn+1
K − |K|cnK +

tn+1∫
tn

∫
∂K

cv · nK dAdt = 0. (133)

Applying an explicit Euler scheme in time, the flux term is approximated by

|K|cn+1
K − |K|cnK +∆tn

[∫
∂K

cv · nK dA

]n
= 0, (134)

where (·)k here means that the expression is evaluated at time tn. Finally, the continuous flux integral is
approximated by numerical fluxes F at each facet σ,

|K|cn+1
K − |K|cnK +∆tn

∑
σ∈Σ

Fn
K,σ = 0, (135)

and we arrive at the fully discretized equations. Due to the explicit Euler discretization, we can formulate a
direct update rule

cn+1
K = cnK − ∆tn

|K|
∑
σ∈Σ

F k
K,σ (136)

for each cell unknown, where the right-hand side terms only depend on known quantities at time tn. Therefore
each cell unknown can be updated independently. (In a code implementation, this makes it particularly easy to
update cell values in parallel for efficiency.)

5.1.1 Choosing the numerical flux (hyperbolic problems)

The careful construction of the numerical fluxes F is crucial to arrive at a useful numerical solution method.
To maintain the conservation property of the continuous equations, we want that for two neighboring control
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volumes K and L that share a facet σKL that FK,σKL
+ FL,σLK

= 0. That means that whatever leaves control
volume K over facet σKL will end up in control volume L and vice versa. The scheme is then said to be (locally)
conservative.

Although this constrains the number of choices, there is still freedom in choosing particular numerical flux
formulations. We discuss some examples below for the case of one-dimensional equations. The case d = 1 is
simply a particular instance of the problem described in the previous section. In the one-dimensional case,
Eq. (128) simplifies to

∂c

∂t
+
∂(vc)

∂z
= 0, (137)

where c, for example, now describes the cross-section average concentration in a vessel. We can generalize the
flux term to some function f(c),

∂c

∂t
+
∂f(c)

∂z
= 0. (138)

The one-dimensional mesh is shown in Fig. 6. Integration in space and time, inserting the definition of cell

Figure 6: A one-dimensional mesh T of control intervals K (cells). Unknowns ci are associated with cells
and numerical fluxes are associated with cell facets σ.

averages, and using an explicit Euler scheme in time, yields

cn+1
L = cnL − ∆tn

∆zL

(
Fn
L,σLM

− Fn
L,σKL

)
, (139)

where ∆zL := |L| and the facets are now the two vertices at the end of each control interval K. Here L denotes
the element in the middle to be balanced, while K is the element to the left and M is the element to the right.

We define the numerical flux as a function of the left and right state,

Fn
σKL

:= Fn
σKL

(cK , cL). (140)

The numerical flux is said to be consistent if

F (a, a) = f(a) ∀a ∈ R. (141)

We want the scheme to be consistent with the physical behavior of the continuous equation.
A desirable property is that our scheme is monotone. A scheme is monotone if it holds that

cnK ≤ unK ∀K ⇒ cn+1
K ≤ un+1

K ∀K, (142)

for some given discrete solutions c and u. Monotonicity makes sure that the scheme converges to the physical
solution (the so-called weak entropy solution). In the physical interpretation, monotonicity makes sure that the
entropy of our system cannot increase.

Two slightly weaker definitions are also useful properties. The so-called total variation for the discrete
equations is defined as

TV (cn) :=
∑
L∈T

|cnL − cnK | (143)

where the element K is the left neighbor of the element L. The total variation essentially measures oscillations
in our solution. (For the left-most element we assume that cnK represents some suitable approximation on the
inflow boundary.) It is known that physical solutions are total-variation-diminishing (TVD). The concept of
TVD numerical schemes was introduced by Harten [5]. A numerical scheme is said to be TVD if it holds that

TV (cn+1) ≤ TV (ck) ∀tn. (144)
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In particular, this also implies that if a solution at time point tn is monotone, it will remain monotone in all
future time steps, that is, TVD schemes are monotonicity-preserving. Consistent TVD schemes are convergent.

All monotone schemes are TVD and therefore monotonicity-preserving. More importantly, it can be shown
that consistent and monotone schemes converge against the physical solution (entropy solution).

However, monotone schemes are generally only first-order accurate (consistency error). This is stated by
Gudonov’s order barrier theorem [4].

Let’s look at some examples of numerical fluxes that are consistent:

• F (a, b) = f(a)+f(b)
2 (central flux approximation),

• F (a, b) = f(a)+f(b)
2 − 0.5(∆zK+∆zL)

2∆t (Lax-Friedrichs flux approximation),

• F (a, b) = f(a) for f ′ > 0 (upwind flux approximation / Riemann solver).

The central flux method is second-order accurate but is prone to oscillatory solutions. The second and third
schemes are monotone but only first-order accurate. The script advection.py compares the different schemes
numerically. The result for a test case with ∆t = 0.1∆z and ∆z = 1/300 is shown in Fig. 7. Here we can see
that we are faced with a trade-off. Monotone schemes are stable but only first-order accurate. The second-order
scheme is more accurate where the solution is smooth but produces unphysical oscillatory solutions with around
the shock.

Figure 7: Comparison of the numerical solution obtained with different numerical flux schemes with the
exact solution solving the linear advection equation with v = 1. Shown is the solution at t = 0.2 and the
spatial domain is the unit interval. The central flux approximates produces an oscillatory solution. The
upwind scheme and the Lax-Friedrichs scheme show a monotone and stable solution and the Lax-Friedrichs
scheme shows the largest artificial dissipation.

5.1.2 Flux limiters (shock-capturing methods)

One idea to construct flux limiters is to use the best of two worlds: where the solution is discontinuous, we use a
monotone first-order scheme; where the solution is smooth, we use a second-order scheme for increased accuracy.
The job of the flux limiters is then to provide a mechanism to automatically detect and switch between these
approximations.

Taking a stable first-order numerical flux approximation Flow (e.g. the upwind flux approximation) and a
higher-order flux numerical approximation Fhigh, a useful family of flux limiters can be written in the form

Fn
σLM

= Fn
low,σLM

− ζ(rL)(F
n
low,σLM

− Fn
high,σLM

), (145)

where ζ is the flux limiter function and ζ(r) ≤ 0, and

rL =
cL − cK
cL − cM

(146)
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is a ratio of gradients of the solution in the mesh. Note that this definition assumes that the transport direction
is K → L→M . This means to approximate the flux at face σLM we now need, in addition to the neighboring
degrees of freedom cL and cM the neighbor of the neighboring element in the upstream direction cK . This
means our stencil for computing the flux contributions to element L increases by one (in the upwind direction).

Which flux limiter function should we choose? Many flux limiters are designed to be total-variation-
diminishing (TVD). A technique for the construction of second-order TVD schemes is given in [18]. Given
that Fhigh is second-order accurate, popular flux limiters (yielding TVD schemes) are given by Eq. (145) and

• ζsb(r) = max{0,min(2r, 1),min(r, 2)} (”superbee”, lim
r→∞

ζ(r) = 2),

• ζvl(r) = (r + |r|)/(1 + |r|) (”van Leer”, lim
r→∞

ζ(r) = 2),

• ζmm(r) = max{0,min(r, 1)} (”minmod”, lim
r→∞

ζ(r) = 1).

The script advection.py implements these flux limiters by combining the central and the upwind flux approx-
imation. The improved results over Fig. 7 are shown in Fig. 8. However, note that by introducing flux limiters,
we make the flux function nonlinear and increase the stencil size.

Figure 8: Comparison of the numerical solution obtained with different numerical flux schemes with the
exact solution solving the linear advection equation with v = 1. Shown is the solution at t = 0.2 and the
spatial domain is the unit interval. Different flux limiters significantly improve the solution accuracy while
capturing the shock.

5.2 Monotone and consistent numerical method for the 1D blood flow model in
elastic vessels

We want to solve the equations derived in Section 4.5 for 1D blood flow in elastic vessels in a vessel segment
given boundary and initial conditions that will be specified later.

5.2.1 Characteristic variables

For the construction of a Riemann solver it is helpful to make a variable transformation into so-called charac-
teristic variables, which provide information in which direction (sign of eigenvalues) information is transported.
To derive these new variables, we first transform Eq. (86) as follows

∂U

∂t
+
∂F (U)

∂U

∂U

∂z
+ S(U) = 0, (147)

with the Jacobian matrix of the flux function J(U) := ∂F (U)
∂U , which is, according to Eq. (96), given as

J(U) =
∂Fi

∂Uj
=

(
0 1

−v̄2 + c21(A) 2v̄

)
, v̄ :=

Q

A
. (148)
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The eigenvalues of J can be computed as solutions of the characteristic equation

det (J − λI) = λ2 − 2v̄λ+ v̄2 − c21(A) = (λ− v̄)2 − c21(A) = (λ− v̄ + c1(A))(λ− v̄ − c1(A)) = 0, (149)

and are therefore given by
λ1 = v̄ − c1, λ2 = v̄ + c1, (150)

and the corresponding left eigenvectors are given by

lT1 (J − λ1I) = 0 ⇒ l1 =
1

A
(v̄ + c1,−1)T , lT2 (J − λ2I) = 0 ⇒ l2 =

1

A
(c1 − v̄, 1)T . (151)

With this eigenbasis the Jacobian matrix can be diagonalized, i.e. J = L−1ΛL, where the rows of L correspond
to the left eigenvectors and Λ := diag(λi) is the diagonal matrix of eigenvalues.

Definition 1. A system of transport equations in the form of Eq. (147) is called hyperbolic if the Jacobian

matrix of the flux function J(U) := ∂F (U)
∂U is diagonalizable and only has real eigenvalues.

Inserting the eigendecomposition of the Jacobian into Eq. (147) and multiplying with L results in

L
∂U

∂t
+ΛL

∂U

∂z
+LS(U) = 0. (152)

If we find new variables such that ∂Wi

∂U = li or in vector-notation ∂W
∂U = L, then we deduce a system of coupled

scalar transport equations for the characteristic variables:

∂W

∂U

∂U

∂t
+Λ

∂W

∂U

∂U

∂z
+LS(U) = 0 ⇔ ∂W

∂t
+Λ

∂W

∂z
+LS(U) = 0. (153)

Thus, calculation of the antiderivatives of l1 and l2 with respect to A and Q gives the new set of variables W1

and W2:

W1 = −Q
A

+ 4c1(A), W2 =
Q

A
+ 4c1(A). (154)

(For this computation, use the definition of v̄ and c1 in terms of Q and A, see Eqs. (95) and (148).) The inverse
transformation, i.e. expressing A,Q in terms of W1,W2, is given as

A(W1,W2) = A0

(
W1 +W2

8c0

)4

, Q(W1,W2) = A(W1,W2)

(
W2 −W1

2

)
, (155)

where c0 := c1(A0) =
√
G0/(2ρ). This transformation allows to express LS(U) of Eq. (153) in terms of

W = (W1,W2)
T .

5.2.2 Observation

For physiologically sensible conditions, we can make the assumption that c1 ≫ v̄. This has the physical
interpretation that waves (due to fluid-structure interaction) travel faster than the mean blood flow velocity.
Consequently, eigenvalue λ1 is always negative and the eigenvalue λ2 is always positive. As the eigenvalues λ1
and λ2 correspond to the “transport velocities” of the characteristic equations Eq. (153), we can construct a
generalized upwind scheme based on this information.

5.2.3 Numerical scheme (Riemann solver)

With the characteristic variables, we have a good understanding of how information is propagated at interfaces
(at any given cross-sectional cut). In fact, for physiological blood flow conditions, we know that the characteristic
variable W1 is transported from right to left, while the characteristic variable W2 is transported from left to
right. This information allows us to construct a Riemann solver. A Riemann problem is given at every face σLM

with a left state UL and a right state UM . The finite volume scheme (omitting the source term for brevity)
based on an explicit Euler time discretization results in

Un+1
L = Un

L − ∆tn
∆zL

(
Fn
L,σLM

− Fn
L,σKL

)
, (156)
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and therefore our goal is to find a numerical flux Fn
L,σLM

. To this end, we choose

Fn
L,σLM

:= Fn
L,σLM

(Un
σLM

(W1,W2)). (157)

This means we construct a flux based on a consistent approximation Un
σLM

on the facet σLM that we will
determine with the characteristic variables. Because of the directionality of the transport using a generalized
upwind scheme here means using W1 =Wn

1,M (Un
M ) and W2 =Wn

2,L(U
n
L) to compute Un

σLM
by using Eq. (155).

5.2.4 Upwind scheme at bifurcations

We will assume that there is one feeding vessel (I) (where the blood flows towards the bifurcation) that bifurcates
(splits in two) into two downstream vessels (II) and (III) in which the blood flows away from the bifurcation, see
Fig. 9. For cases where flow directions are different, the following consideration work analogously but signs and
directional choices differ. Moreover, we assume that each of the vessels connected to the bifurcation has given
parameters Av

0 and Gv
0, v ∈ {I, II, III}. Hence, they may differ (and usually will differ) from vessel to vessel. We

assume that the parameter fields are constant per vessel but with a discontinuity across bifurcations.

Figure 9: Flow through a bifurcation. Coupling conditions can be derived using a generalized upwind
scheme. The bifurcation solver solves for the states at the bifurcation in each vessel, AI

B , A
II
B , A

III
B , QI

B , Q
II
B ,

QIII
B .

To evaluate the flux function F (U) at the bifurcation in each vessel, we need to approximate Uv
B , where

v ∈ {I, II, III} and the subscript B stands for “bifurcation” signifying that the element face at which these
quantities are approximated is located in the bifurcation.

Recall thatU = (A,Q)T and that we have three vessels at the bifurcation, we conclude that we are looking for
six unknowns, AI

B , A
II
B , A

III
B , QI

B , Q
II
B , Q

III
B . You may think of the element faces at the bifurcation to exist three

times, once for each vessel, and our goal is to evaluate the fluxes F I
B(A

I
B , Q

I
B), F

II
B(A

II
B , Q

II
B), F

III
B (AIII

B , QIII
B )

which appear in a finite volume scheme when balancing the elements in the grid adjacent to the bifurcation. We
also introduce the element unknowns UK , UL, UM , where K is the element next to the bifurcation in vessel
(I), L in vessel (II) and M (III).

As a first condition, we recall that mass is conserved at the bifurcation and therefore

QI
B = QII

B +QIII
B . (158)

Moreover, we know from Bernoulli’s principle that a velocity increase of fluid leads simultaneously to a decrease
in static pressure or a decrease in the fluid’s potential energy. For incompressible fluids (ρ = const.) this
principle can be summarized as

1

2
ρv̄2 + ρgz + p = const.

We recall that we neglected gravitational forces and therefore, here

pt :=
1

2
ρv̄2 + p = const.,
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where pt is sometimes called total pressure (the sum of the static pressure p and the dynamic pressure 1
2ρv̄

2). (We
remark that for capillary vessels, where the flow velocities are very small (creeping flow assumption, Re ≪ 1),
the dynamic pressure is usually considered negligible in comparison to the static pressure.) In effect, Bernoulli’s
principle states that the total pressure is continuous across the bifurcation (even though, for instance, the
cross-sectional area is discontinuous). This gives us two more conditions

pIt,B = pIIt,B ⇒ 1

2

(
QI

B

AI
B

)2

+ 2(cI0)
2

(√
AI

B

AI
0

− 1

)
=

1

2

(
QII

B

AII
B

)2

+ 2(cII0 )
2

(√
AII

B

AII
0

− 1

)
, (159)

pIt,B = pIIIt,B ⇒ 1

2

(
QI

B

AI
B

)2

+ 2(cI0)
2

(√
AI

B

AI
0

− 1

)
=

1

2

(
QIII

B

AIII
B

)2

+ 2(cIII0 )2

(√
AIII

B

AIII
0

− 1

)
, (160)

where we divided by ρ and used the definition of cv0 =
√
Gv

0/(2ρ), v̄ = Q/A, and p = Pext +G0

(√
A/A0 − 1

)
.

The external pressure Pext appears on both sides and therefore cancels. Finally, we can express our unknown
at the bifurcation in terms of the characteristic variables W = (W1,W2)

T , which yields three equations

Qv
B = Av

B

(
W v

2,B −W v
1,B

2

)
, v ∈ {I, II, III}. (161)

But how do we find W v
2,B and W v

1,B? Here, we take an upwind decision. In the feeding vessel waves associated
with W2 travel towards the bifurcation. In the downstream vessels waves associated with W1 travel towards
the bifurcation. Therefore,

W I
2,B =W2(AK , QK) =

QK

AK
+ 4c1(AK), (162)

W II
1,B =W1(AL, QL) = −QL

AL
+ 4c1(AL), (163)

W III
1,B =W1(AM , QM ) = −QM

AM
+ 4c1(AM ). (164)

For the complementary characteristic variables for which associated waves travel in the opposite direction, we
take the information of the bifurcation, that is

W I
1,B =W1(A

I
B , Q

I
B) = −Q

I
B

AI
B

+ 4c1(A
I
B), (165)

W II
2,B =W2(A

II
B , Q

II
B) =

QII
B

AII
B

+ 4c1(A
II
B), (166)

W III
2,B =W2(A

III
B , QIII

B ) =
QIII

B

AI
B

+ 4c1(A
III
B ). (167)

Hence after applying the upwind scheme, we have expressions for allW v
2,B andW v

1,B in terms of our unknown at
the bifurcation and known values in the adjacent elements. In summary, Eqs. (158) to (161) are six (nonlinear)
equations which we can solve for the six unknowns, AI

B , A
II
B , A

III
B , QI

B , Q
II
B , Q

III
B .

Since the system of equations is nonlinear, we need a nonlinear solver like the Newton method. To this end,
the equation can be written in residual form R(Uv

B) = 0, with the residual vector R ∈ R6. Applying Newton’s
method yields the iteration rule for iteration m+ 1,

[Uv
B ]

m+1
= [Uv

B ]
m − (JR ([Uv

B ]
m
))

−1
R ([Uv

B ]
m
) , (168)

where JR := ∂R
∂U is the Jacobian matrix of the residual. In the first iteration, [Uv

B ]
0
is to be specified (initial

guess). Ideally, the initial guess is close to the actual solution. We can start with the element values in the
elements adjacent to the bifurcation which should be quite close to what we want to estimate for the bifurcation.
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