
AC
CE
PT
ED
M
AN
US
CR
IP
T

RESEARCH ARTICLE

A fully implicit coupled pore-network/free-flow model for the

pore-scale simulation of drying processes

K. Weishaupta and T. Kochb and R. Helmiga

aDepartment of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart,
Germany; bDepartment of Mathematics, University of Oslo, Norway

ARTICLE HISTORY

Compiled February 4, 2022

ABSTRACT
We present a fully coupled pore-network/free-flow model providing pore-scale in-
sight into drying processes. We solve the Navier-Stokes equations with component
transport in the free-flow region, coupled to a dynamic two-phase, two-component
pore-network model in the porous domain. The dynamic multi-physics model allows
to temporally resolve drying processes in-between capillary equilibrium states. All
simulations are non-isothermal and use pressure- and temperature-depended fluid
properties. Carefully chosen coupling conditions and a monolithic solver ensure local
conservation of mass, momentum and energy fluxes, in particular at the interface
between both model domains. We solve for wetting and non-wetting fluid pressure
fields and consider advective gas transport in the network. Numerical examples
demonstrate that the coupled model is able to cover a wide range of physical pro-
cesses relevant for drying and show the mutual interaction of the two subregions.
The model is implemented in the modular open-source framework DuMuxsuch that
extensions are straight-forward.

KEYWORDS
dynamic pore-network model; multi-physics simulation; two-phase flow in porous
media; evaporation and drying; pore-network Navier-Stokes coupling

1. Introduction

Drying processes are ubiquitous in environmental systems and technical applications.
Understanding soil water evaporation (1 ) is crucial for agriculture and will become
even more important with growing population and climate change, e.g, in connection
with water scarcity or the salinization of soils (2 ). With the increased pressure of sus-
taining the population’s demand for food, drying plays a key role for the conservation
of perishable goods (3 ). Drying is one of the most energy-consuming process steps in
many industrial applications (4 ) such that improvements in efficiency are needed more
than ever to reduce global CO2 emissions. Furthermore, dynamic markets susceptible
to supply chain delays can be affected by long drying times.
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The need for better process understanding and optimization has fostered the de-
velopment of a wide variety of mathematical and numerical models (5 ). Prat (6 ) laid
the foundation for simulating drying processes with pore-network models (PNMs) by
combining an invasion-percolation algorithm with a model for water vapor mass trans-
port within the network. His model is widely used and has been extended to capture a
large variety of physical processes and pore-scale mechanisms (7 , 8 ). Such models usu-
ally consider the atmosphere adjacent to the porous medium by appropriate boundary
conditions. For a better approximation of the atmospheric boundary layers, Shaeri et
al. (9 ) coupled a gas-channel domain modeled by the Navier-Stokes equations to a
porous domain modeled with a variant of the above-mentioned PNM. In their initial
model and extended versions thereof (10 , 11 ), the authors employ a pre-computed,
time-invariant velocity field as basis for an advection-diffusion model in the gas chan-
nel coupled to diffusive vapor transport in the pore network. Advective gas flow driven
by pressure gradients within the pore network is neglected. The model is isothermal
and the quasi-static PNM can only resolve capillary equilibrium limiting applicability
to slow drying processes.

The described models often focus on including a single or a limited number of
physical process in addition to the two basic processes: capillary pressure-driven liquid
flow and vapor diffusion in the gas phase (8 ).

In this work, we present a hybrid multi-physics model consisting of a dynamic two-
phase PNM coupled with a single-phase free-flow model. It includes the two basic
processes as well as the effects of liquid and gas viscosity, convection in the liquid
and in the gas phase, enthalpy transport, and interaction with the atmosphere. Its
key novelty lies in the relaxation of various assumptions made in the above-mentioned
models and the generality and modularity of a fully-coupled monolithic solver approach
(12 –14 ) where the balance equations of both the free-flow domain and the pore-
network model are assembled into one large system of equations. The latter is then
solved simultaneously such that, in contrast to sequential coupling schemes (9 –11 ), no
coupling iterations are required, i.e., the individual subdomain models do not need to
run and exchange coupling data repeatedly until convergence is reached. The dynamic
PNM can temporally resolve all steps of the invasion and drying process including
global mass redistribution due to local invasion events. The finite volume discretization
in space and the implicit time discretization in combination with appropriate interface
conditions and a monolithic solver scheme ensure local and global mass and energy
conservation in each time step. By solving for the pressure and flow field in the entire
domain, we can describe advective and diffusive species transport in the liquid and the
gas phase occupying the pore space and the gas phase of the atmosphere. We consider
a coupled energy balance equation in both the free flow and the PNM to capture
non-isothermal effects such as the variation of density due to temperature gradients.
The presented model is conceptually similar to the sharp interface model developed
by Mosthaf (15 ), however they considered a Darcy-type model in the porous domain
instead of a PNM. We remark here that pore-network models allow to model processes
that cannot be captured in Darcy-scale continuum model such as the formation of
isolated wetting fluid clusters and the loss of hydraulic connectivity, or the pore-scale
interaction with the atmosphere. According to Metzger (8 ) and to the best of our
knowledge, no PNM-based drying simulator has included convection in the gas phase
up to now and the effects of liquid viscosity (16 ) and enthalpy transport (17 ) have
not yet been presented in combination.

We consider these effects in a fully coupled way. Finally, we implement our model
in the open-source framework DuMuxexploiting its modular structure. In combina-
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tion with the monolithic solver based on numeric differentiation, model extensions are
straight-forward. Effects like salt precipitation, nonlinear inertia-driven network flow
or local thermal non-equilibrium (18 ) can be included without much implementation
effort. We have recently presented our model concept including a small numerical
example (19 ). In this work, we extend the physical complexity of the model by consid-
ering temperature-dependent surface tension and we improve the numerical robustness
and performance of the model by using a more advanced way for solving the arising
nonlinear complementarity problem given by Eq. (20). The main focus of this work,
however, is the investigation of different physical aspects of the drying process by
means of numerical experiments (now also featuring random pore-size distributions)
which highlight the model’s capabilities and the relevance to include certain physical
processes such as pressure-driven, advective gas flow in the pore-network region which
is very often neglected in other models.

2. Mathematical model and numerical implementation

We consider two computational domains: the porous region ΩPNM and the free-flow
domain ΩFF. A two-phase, two-component pore-network model is used in ΩPNM while
the single-phase two-component Navier-Stokes equations are solved in ΩFF. Both mod-
els are coupled at the common interface Γ and consider non-isothermal conditions and
species transport. Gravity is neglected in both domains and local thermodynamic
equilibrium is assumed.

The liquid wetting phase w consists of the main component water and the minor
pseudo-component air. The gaseous non-wetting phase g is a mixture of air (main
component) and water. Both phases w and g can be present in ΩPNM while only the
gas phase g exists in ΩFF. We employ fluid properties based on constitutive relations
and data provided by the industry standard IAPWS (20 ) and Reid (21 ). We assume
a fixed contact angle of θ = 0 in this work such that the solid skeleton of the porous
material is fully hydrophilic. Other contact angles could be considered by adapting
the pore-local capillary-pressure saturation curve given by Eq. (16).

2.1. Free-flow model

In ΩFF, we solve the Navier-Stokes equations for compressible Newtonian fluids, ne-
glecting gravity and dilation,

∂(%gvg)

∂t
+∇·(%gvgv

T
g ) = ∇·

[
µg(∇vg +∇vg

T )
]
−∇pg + f , (1)

where %g and µg = %gνg denote gas phase mass density and dynamic viscosity and vg

and pg are phase velocity and pressure. f is an optional body force term. Solving Eq. (1)
on three-dimensional domains, such as the free-flow channel considered in Section 3,
can be computationally expensive. Our domain is horizontally thin, i.e., the channel
width wch is much higher than its depth dch with an aspect ratio of wch/dch > 10.
This makes it possible to solve Eq. (1) on a two-dimensional grid where we do not
discretely resolve the channel depth anymore but instead consider a wall friction term
(22 , 23 ),
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f = −12
µg

d2
ch

vg , (2)

assuming a parabolic velocity profile along the neglected z-axis of ΩFF. When us-
ing this term, Eq. (1) in 2D describes the z-averaged velocity instead of the three-
dimensional velocity. Of course, our model can be used for ΩFF discretized in 3D as
well by just setting f = 0 which, however, comes at a higher computational cost.

Furthermore, we consider one molar balance equation for each component κ ∈
{water, air}:

∂(xκg%mol,g)

∂t
+∇·(xκg%mol,gvg + jκ,FF

diff,mol,g) = qκ , (3)

where xκg is the mole fraction of component κ within the gas phase and %mol,g is the
molar density of the latter. qκ is a molar sink or source term which is zero in this
work. The diffusive molar flux jκ,FF

diff,mol,g is approximated by Fick’s first law,

jκ,FF
diff,mol,g = − 1

Mκ
%gDg∇Xκ

g , (4)

where Dg is the binary diffusion coefficient for water and air within the gas phase and
Xκ

g is the mass fraction of component κ. Since Eq. (1) yields a mass-averaged bulk
velocity (24 ), we consider a mass-based form of Fick’s law here such that the diffusive
mass flux needs to be converted into a molar flux by division by the molar mass Mκ.
The mass fraction can be expressed in terms of mole fractions,

Xκ
α =

xκαM
κ

Mα
=

xκαM
κ∑

κ′ x
κ′
αM

κ′
, (5)

where Mα is the phase-averaged molecular weight. Note that
∑

κ x
κ
α =

∑
κX

κ
α = 1.

The energy balance is given by

∂(%gug)

∂t
+∇·(hg%gvg) +

∑
κ

∇·
(
jκ,FF
diff,mol,gh

κ
g

)
−∇·(λg∇T ) = qe , (6)

where ug is the specific internal energy and hg is the specific phase enthalpy. The phase
enthalpy can be expressed as the sum

hg =
∑
κ

Xκ
g h

κ
g , (7)

where hκg denotes the specific enthalpy of a phase containing only component κ.

The term jκ,FF
diff,mol,gh

κ
g in Eq. (6) accounts for the molar diffusive energy transport.

Heat conduction is described by Fourier’s law, where λg is the effective thermal con-
ductivity of the gas phase and T the temperature. Finally, qe is an energy sink or
source term which is zero in this work.

We discretize Eqs. (1) to (6) with a staggered-grid finite volume approach, also
known as MAC scheme (25 ). This yields stable and oscillation-free solutions without
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the need of any stabilization (26 ). All scalar primary variables (pg, xwater
g and T ) are

located at the primal grid control volume centers while normal-velocity degrees of
freedom (vg · n) live on the dual grid control volume centers, constructed around the
face centers of the primal grid (27 ).

2.2. Pore-network model

In ΩPNM, we employ a dynamic PNM with two miscible fluid phases, including compo-
nent and energy transport, and phase change. We consider two individual phase pres-
sures pw and pg. Note that instead of using a semi-implicit solution strategy (28 , 29 ),
where the pressure and saturation fields are solved for sequentially, we consider a fully
coupled and implicit model formulation such that all balance equations are solved si-
multaneously. Figure 1(a) schematically depicts two pore bodies connected by a pore
throat and shows the relevant pore space dimensions. In this work, we consider cubic
pore bodies connected by throats of either circular, square or triangular cross-sectional
areas as shown in Fig. 1(b).

(a) (b)

Figure 1. Pore-body and pore-throat geometry. (a) Two pore bodies connected by a pore throat. ri
and rj are the inscribed pore body radii and can be chosen independently (they can also be equal). lij is the

length of the throat connecting pores i and j. The inscribed throat radius rij is determined as described in

Appendix B. The left pore body features a volume Vi marked in green which includes half of the pore throat
volume. The same applies for Vj highlighted in yellow. (b) Throat cross-sectional shapes and wetting layers

facilitating corner flow. In this figure, each throat has the same inscribed radius rij . Wetting-phase layers (blue)
may occur in angular throats after the non-wetting phase has invaded the throat. ram is the radius of curvature

of the layer’s arc meniscus.

2.2.1. Balance equations

Assuming fully developed creeping flow,

Qα,ij = gα,ij(pα,i − pα,j) (8)

describes the volume flow rate of phase α ∈ {w, g} through pore throat ij connecting
pore bodies i and j (28 ). The pore throat transmissibility gα,ij of phase α depends
on the throat geometry, the throat-local capillary pressure and the fluid viscosity. pα,i
and pα,j are the pore phase pressures of two neighboring pores i and j. In the presence
of only one single phase, gα,ij is given by (30 )

gα,ij =
kA2

tot,ijG

µαlij
, (9)

where Atot,ij is the total cross-sectional area of the throat and lij its effective length,
defined here as the Euclidean pore-body-center distance minus the inscribed pore-body
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radii ri and rj . The dimensionless shape factor is given by(31 )

G =
Atot,ij

P 2
tot,ij

, (10)

with the throat cross-sectional perimeter Ptot,ij and a shape-dependent constant k
(0.6, 0.5623 and 0.5 for equilateral triangles, squares and circles, respectively). We
neglect the pore-body pressure loss so that the flow resistance is fully determined by
the throat.

In the presence of both phases (angular throats), the transmissibility of the wetting
layer is given by (32 ),

gw,ij =
r2

am

µwlij

ncorner∑
Λ=1

Aw,Λ

ξΛ
. (11)

The radius of curvature of the arc menisci is denoted by ram = γ/pc (the ratio of in-
terfacial tension and capillary pressure), Aw,Λ is the cross-sectional area of the wetting
layer in corner Λ, and ξΛ is a dimensionless resistance factor (33 ). The conductance
of the non-wetting gas phase as the throat’s lumen is given by (34 )

gg,ij =
r2

effAg,ij

8µglij
, reff =

1

2

(√
Ag,ij

π
+ rij

)
, (12)

where Ag,ij is the gas phase cross-sectional area and rij denotes the inscribed radius
of the pore throat.

Given a pore fully saturated with the wetting phase, an entry capillary pressure
needs to be overcome before the gas phases can invade a pore throat (35 , 36 ). If
the capillary pressure falls below a certain threshold pressure, snap-off occurs and the
pore throat is fully saturated by the wetting phase again. Entry and snap-off pressures
are given in Appendix A. As described later in Section 2.2.3 and Fig. 3, we check for
invasion or snap-off at each throat after each Newton iteration.

We formulate a molar balance for each component κ for each pore i,

Vi
∂(
∑

α(xκα%mol,αSα)i)

∂t
+
∑
α

∑
j

(xκα%mol,αQα)ij

+
∑
α

∑
j

(
jκ,PNM
diff,mol,αAα

)
ij

= (V qκ)i ,
(13)

where Vi is the volume of pore i, xκα,i is the mole fraction of component κ within
phase α, %mol,α,i is the molar density and Sα,i the pore-local saturation of phase α. For
interface pores, the source term (V qκ)i is non-zero and accounts for the mass exchange
with ΩFF as given by Eq. (27). We equally distribute the throat volume Atot,ijlij to
the adjacent pore body volumes Vi and Vj as shown in Fig. 1(a). In analogy to Eq. (4),
Fick’s first law is used to describe diffusive fluxes in the PNM,

jκ,PNM
diff,mol,α,ij =

1

Mκ

%α,i + %α,j
2

Dα,i +Dα,j

2

Xκ
α,i −Xκ

α,j

lij
. (14)
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We consider the following energy balance equation for each pore body (assuming
local thermodynamic equilibrium),

Vi
∂(
∑

α(%αuαSα)i)

∂t
+
∑
α

∑
j

(%αhαQα)ij

+
∑
α

∑
j

[
Aα,ij

∑
κ

(
jκ,PNM
diff,mol,αh

κ
α

)
ij

]

+
∑
α

∑
j

λα,i + λα,j
2

Ti − Tj
lij

Aα,ij = (V qe)i .

(15)

As for the free-flow domain, the term jκ,PNM
diff,mol,αh

κ
α takes into account the molecular

diffusive energy transport. We note that due to phase change and hκg > hκw, we see a
temperature drop during evaporation (enthalpy of vaporization). For interface pores,
the source term (V qe)i is non-zero but accounts for the energy exchange with ΩFF as
given by Eq. (30).

We only balance energy fluxes within the pore space (the fluid) here, assuming a
perfectly insulating solid matrix. We have recently developed a dual network concept
(18 ) in order to include heat conduction in the solid phase. There, a fluid network
(representing the void space as in classical pore-network modeling) is coupled to a
second, solid network via appropriate pore-local sink and source terms allowing the
description of local thermal non-equilibrium effects. We aim to incorporate this concept
into the model presented here in future work.

2.2.2. Closure relations and phase composition

The presented two-phase two-component system is fully determined by the following
closure relations. In the presence of two fluid phases, we require Sw,i + Sg,i = 1 (no
void space) and xwater

α,i + xair
α,i = 1.

The pore-local pc − Sw relation for cubic pore bodies is chosen as (28 )

pc,i(Sw,i) =
2γ

ri(1− exp(−6.83Sw,i))
, (16)

where ri is the inscribed radius of pore body i and γ is the interfacial tension. We
only consider cubic pore bodies here but the model is open for extension by adapting
Eq. (16). For sake of numerical robustness, we regularize Eq. (16) such that the curve
becomes linear for Sw,i < 1× 10−2 and we enforce pc,i(Sw,i = 1) = 0. This is done by
linearly connecting pc,i(Sw,i = 1− 1× 10−6) with pc,i(Sw,i = 1). The extreme negative
slope of the curve leads to very high negative values of pc,i(Sw,i > 1) resulting in a sort
of penalization for nonphysical saturation values above one and leading to improved
Newton convergence behavior (Section 2.3.2). Furthermore, we require the numerical
solver to fulfill 0 ≤ Sα,i ≤ 1 once the Newton scheme is converged.

Evaporation and condensation are not modeled explicitly (37 ) as we assume local
thermodynamic equilibrium in each pore body such that the phase composition can
be determined implicitly. We denote the component fugacities by fκα = fκ. Assuming
air as ideal gas, Raoult’s law,

pwater
g = fwater = xwater

w pwater
sat , (17)

7



AC
CE
PT
ED
M
AN
US
CR
IP
T

and Henry’s law,

pair
g = fair = xair

w H , (18)

are used to calculate the phase composition. The symbol pκg = pgx
κ
g denotes the partial

pressure of component κ in the gas phase, pwater
sat is the saturated vapor pressure and

H is the temperature-dependent Henry coefficient. We take into account the reduction
of pwater

sat due to capillary effects (38 ),

pκsat,Kelvin = pκsat exp

(
− pcM

κ

%wRT

)
. (19)

A phase α may completely vanish, e.g., if a pore dries out or gets filled with water.
This leads to the degeneration of the two-phase system such that Sα and xκα are de-
prived of their physical meaning. One possibility to account for this is a local, adaptive
change of primary variables (39 , 40 ) which is, however, not always numerically stable.
We consider a different approach where an additional pore-local constraint for each
phase α is formulated (41 ), the so-called nonlinear complementarity problem (NCP):

Sα,i

(
1−

∑
κ

xκα,i

)
= 0 ∧ 1−

∑
κ

xκα,i ≥ 0 ∧ Sα,i ≥ 0 . (20)

We solve Eq. (20) using a penalized Fischer-Burmeister function (42 )

λFB

(√
a2 + b2 − (a+ b)

)
+ (1− λFB)(max(0, a) max(0, b)) = 0 (21)

with a = Sα,i and b = 1 −
∑

κ x
κ
α,i. Following the authors’ suggestion, we set the

parameter λFB to 0.95 (which improved Newton convergence in comparison with the
non-penalized version, λFB = 1). We observed that Eq. (21) leads to faster and more
stable Newton convergence compared to

min(Sα,i, 1−
∑
κ

xκα,i) = 0 (22)

which we used previously (19 ) for solving Eq. (20).

2.2.3. Primary variables and numerical model

The PNM’s primary variables are the wetting-phase saturation Sw, the component
fugacities fair and fwater, the fluid temperature T and a phase pressure pα. The latter
is either pw or pg, depending on the pore-local Sw,i. We found that this very simple
switching mechanism increases the model’s numerical robustness for Sw → 0. In this
paper, we chose a threshold of Sw,i = 0.1 below which pw is replaced by pg.

We use a dynamic and fully coupled PNM which yields the phase saturations and
pressures (along with the above-mentioned other primary variables) simultaneously.
As explained later in Section 2.3.2 and Fig. 3, a Newton-Raphson method is used to
solve the global system of equations resulting from the coupling of ΩFF with ΩPNM.
The invasion state of each pore-throat (see Eqs. (A1) and (A4)) is checked after each
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global Newton iteration and the constitutive laws for gα,ij are adapted accordingly. If
pc,i exceeds pc,e in a previously water-filled throat, the latter is marked as invaded,
while a snap-off event occurs if pc,i falls below pc,s for invaded throats. We enforce
at least one additional Newton iteration if invasion or snap-off occurred. We refer to
Chen (43 ), who independently developed a very similar approach, for further details.

2.3. Interface conditions

The continuity of mass, momentum and energy at the interface between the free flow
and the pore-network model is enforced by means of appropriate coupling conditions,
assuming creeping flow at the interface. For this, we revised the REV-scale coupling
conditions proposed by Mosthaf (15 ) and adapted them for the pore scale. Interfacial
quantities of the free-flow domain are marked by [·]FF, while [·]PNM refers to the
quantities of the pore-network model, respectively. We define a unit vector n normal
to the coupling interface which points out of the own model domain.

In contrast to REV-scale coupled models (15 ), where fluxes are exchanged across
the entire common surface between the free-flow and porous-medium Γ, we only con-
sider discrete, local pore-scale coupling interfaces Γi which correspond to pore bodies
intersecting with the free-flow domain ΩFF as shown in Fig. 2.

(a) (b)
Figure 2. Coupling free-flow and pore-network model: interface conditions. (a) The free-flow do-

main ΩFF and the pore-network model domain ΩPNM are separated by Γ. (b) Γi is a pore-local coupling
interface (here with three free-flow cells per pore-width). Figure taken from (19 ) (license: CC BY 4.0).

The interface cuts each coupling pore body i in half and we only consider the interior
volume. We restrict the coordination number of said pore bodies to one such that only
one pore throat is attached to them. This limitation, facilitating the formulation of
coupling conditions, could be addressed in future work. Each coupling interface Γi is
connected with at least one free-flow grid cell positioned matching above the pore.
Figure 2(b) schematically shows the coupling of one pore body with three free-flow
grid cells. We assume no-slip/no-flow conditions for ΩFF for the solid grain locations
(marked gray in Fig. 2), such that vg = 0 on Γ \ Γi.

2.3.1. Coupling conditions

The momentum interface conditions are formulated for the creeping flow regime (13 ).
Assuming mechanical equilibrium at Γi,

[pg]FF = [pg]PNM on Γi (23)
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is enforced for the normal force component.
The tangential momentum exchange in terms of pore-scale slip is given by

[vg · tk]FF =

{
vslip,k on Γi,

0 else ,
(24)

with

vslip,k =
1

βpore
[(−(∇vg +∇vg

T ) · n) · tk]FF + [vg · tk]PNM , (25)

where tk, k ∈ {0, ..., d− 1} spans the interface’s tangent plane. The tangential com-
ponent of the pore-body interface velocity satisfies

[vg · tk]PNM =
Qg,ij

|Γi|
[nij · tk]PNM , (26)

where Qg,ij denotes the gas phase volume flow rate through pore throat ij, |Γi| is
the area of the discrete coupling interface Γi, and nij is a unit normal vector aligned
with throat’s central axis, pointing towards Γi. Potential deflections of the gas flow
due the pore-body geometry are neglected and we assume that Γi is entirely occupied
by the gas phase. There is a conceptual similarity of this pore-scale condition with
the Beavers-Joseph interface slip condition widely used in REV-scale models (15 , 44 ).
The pore-scale slip parameter βpore can be determined numerically in a preprocessing
step (13 ).

The flux of each component κ is conserved across Γi,

[(xκg%mol,gvg + jκdiff,mol,g) · n]PNM = −[(xκg%mol,gvg + jκdiff,mol,g) · n]FF . (27)

Assuming local chemical equilibrium (15 ) within a pore body and at the interface,

[Xκ
g ]FF = [Xκ

g ]PNM on Γi (28)

is used as a Dirichlet-type coupling condition for ΩFF.
Fick’s law approximates the diffusive molecular flux within the free-flow domain

directly at the interface,

[jκdiff,mol,g · n]FF = − 1

Mκ
[Dg%g]FF+1

[Xκ
g ]FF − [Xκ

g ]FF+1

0.5[∆h]FF+1
. (29)

The superscript FF + 1 refers to quantities of the free-flow grid cell directly adjacent
to the interface and 0.5[∆h]FF+1 is the distance between that cell’s center and the
interface. All phase-transfer processes are assumed to occur within the interface pore
body under local thermodynamic equilibrium. This implies that the vaporization takes
places within the pore body. We restrict the effective transfer of water vapor from
ΩPNM to ΩFF to diffusive and advective fluxes within the gas phase across Γi. We aim
to include a condition allowing for liquid water to leave the network in future work.
This could be relevant, e.g., for modeling hydrophobic materials such as fuel cell gas
diffusion layers on top of which liquid droplets may form in ΩFF.
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Energy is conserved across Γi,[(
(hg%gvg) +

∑
κ

(jκdiff,mol,gh
κ
g)− λg∇T

)
· n

]PNM

= −

[(
hg%gvg +

∑
κ

(jκdiff,mol,gh
κ
g)− λg∇T

)
· n

]FF

.

(30)

Again, diffusive, conductive and convective energy transfer only occur through the gas
phase. The conductive heat transfer is calculated in analogy to Eq. (29) by enforcing
the continuity of temperatures on Γi,

[T ]FF = [T ]PNM on Γi . (31)

2.3.2. Implementation and monolithic solver

We implemented the coupled model in DuMux, an open-source toolbox for the
simulation of flow and transport in permeable media (14 , 45 , 46 ) based on Dune
(47 ); dune-foamgrid (48 ) is used as network grid manager.

Figure 3 shows a flowchart of the model’s algorithmic structure. Using a first order
backward Euler scheme for the temporal discretization, Newton’s method is used in
each time step to linearize and solve the nonlinear system of equations. In doing so, a
monolithic linear system comprising entries from both subdomains and the interface
conditions is assembled into a single system matrix and passed to a direct linear solver.
We employ a chopped variable update step with individual chopping factors for each
primary variable in order to stabilize and speed-up convergence. At the end of each
Newton iteration, the invasion state of each pore throat is checked (see Appendix A)
and a primary variable switch, as described in Section 2.2.3, is invoked.
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Initialize
grid, parameters,

variables, linear algebra

Newton's method
(inner loop)

NO

?
YES

Newton convergence

Advance in time

Assemble linear system

Solve linear system

Update throat invasion state

Write VTK output

Update variables

TIME LOOP (implicit Euler time integration)

NONLINEAR SOLVER LOOP

?
YES

Time (outer loop)

Primary variable switch 

residual (discrete governing equations FVM)

free-flow momentum

free-flow mass
   transport & energy

pore-network model

Jacobian (by numerical differentiation)

vector of unknowns

Compute variable-wise
step size factor

(for "chopped" update)

and

update

"chopped" update

Figure 3. Monolithic nonlinear solver scheme for coupled free-flow / pore-network model. After

the initialization of the grid (either generated on-the-fly or read-in from a file), an outer time loop (shown

in green) is run until the averaged network saturation S̄w falls below a given threshold of 1× 10−14. In
each time step, Newton’s method (inner loop, shown in blue) is called in order to solve the nonlinear system of

equations. All balance equations are assembled into one monolithic Jacobian matrix J̃ . The vector of unknowns

u features a nested block structure holding the entries of each subdomain, taking into account the staggered-
grid discretization scheme used for ΩFF. vFF stores all velocity unknowns located on the element faces of ΩFF.

uFF
� holds all unknowns living on the cell centers of ΩFF. The unknowns of ΩPNM are stored in uPNM. We

perform a chopped update step where � is a symbol for element-wise multiplication. After successful Newton
convergence, the time loop advances the time step and optionally writes output files for visualization.

We chose the time step sizes heuristically based on the convergence rate of the
Newton scheme,

∆tn+1 =


∆tn

(
1

1+
nIt−nIt,target

nIt,target

)
nIt,max > nIt > nIt,target,

∆tn
(

1 +
nIt,target−nIt

1.2nIt,target

)
nIt ≤ nIt,target .

(32)

The number of Newton iterations required for the previous time step is given by nIt

while nIt,target is an input target value. The time step size is reduced by a given factor
if nIt exceeds a given nIt,max.
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3. Numerical experiments

The presented PNM-FF model is applied in a range of different setups related to drying
in porous media. In all cases, we consider a flat domain, resembling a microfluidic
experimental device, cf. (49 ). Air in a gas channel (ΩFF) flows past an initially water-
saturated porous medium (ΩPNM). We will investigate two general setups, one with a
stagnant air atmosphere (Fig. 4(a) – referred to as scenario SA) and one with forced
convective flow in the gas channel (Fig. 4(b) – referred to as scenario FC). The channel
has a constant depth of dch = 400 µm. The remaining dimensions are given in Fig. 4(a).
The flat nature of our setups justifies the use of a quasi-3D approach for the free-
flow model and the neglect of gravity. We solve the two-dimensional Navier-Stokes
equations with the wall-friction term given in Eq. (2). In a numerical preprocessing
step, we determined βpore = 3.71 for Eq. (24) (13 ). The channel is discretized with
133× 32 axis-aligned rectangular cells in horizontal and vertical direction. We applied
a spatial grading such that the vertical extend of the cells close to Γ and the upper
boundary is smaller than in the rest of the domain. This allows to better approximate
the velocity gradients at the channel boundaries.
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(a) Setup with stagnant atmosphere (→ SA).

no
-f

lo
w

 (
m

as
s 

/ e
ne

rg
y)

no-flow (mass / energy), no-slip

(b) Setup with air flow (→ FC).

Figure 4. Numerical experiment setup. Water vapor will leave the system at the top of ΩFF in (a), while
air flow from left to right in (b) will transport the vapor out of the system at the right boundary of ΩFF. The
dimensions given in (a) also hold for (b), only the boundary conditions differ.

The pore network consists of 19× 10 equally spaced pores of cubic shape with log-
normal-distributed inscribed pore body radii. The distribution parameters are given
for each scenario. The pores are connected by throats of either quadratic, triangular
or circular cross-sectional shapes with an inscribed radius based on the adjacent pore
body radii, as described in Appendix B.

The numerical experiments are variations of the following basic scenario. The
porous domain is initially fully saturated with the wetting phase, Sw,init = 1.0,
xair

w,init = 1× 10−5. The initial pressure and temperature are pg,init = 1× 105 Pa and
Tinit = 293.15 K in both porous and free-flow domain. We initially start with 100 %
relative humidity in the gas phase (xwater

g,init = 23.5× 10−3 at T = 293.15 K), but enforce

a relative humidity of 20 % (xwater
g,top = xwater

g,in = 4.7× 10−3 at T = 293.15 K) on the top
channel boundary or the channel inlet, respectively. In scenario SA (stagnant air) the
channel sides (left, right, virtual back, virtual front) are insulated walls enforced by
adiabatic, no-flow, no-slip boundary condition, and the initial and boundary values of
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the gas velocity in the channel is vg,init = 0. The channel top is open but pressure, tem-
perature and water vapor mole fraction are fixed. In scenario FC (forced convection),
the channel top is closed for flow (vg,top = 0) and a pressure gradient between left and
right boundary (pin = pout + 1 Pa, pout = 1× 105 Pa, respectively) drives the gas flow
yielding a maximum velocity of v ≈ 5× 10−2 m s−1 in the channel and a Reynolds
number of Re := vdchρgµ

−1
g ≈ 15, based on the channel height of dch = 5× 10−3 m.

The simulations are stopped once the domain-averaged saturation in ΩPNM is below
1× 10−14 (fully-dried porous domain).

For the evaluation of the results, we define the total evaporation rate,

ė :=
ṁwater

%w|Γ|
, (33)

as a global measure for characterizing the drying process. Here, ṁwater is the total mass
transfer rate of water from ΩPNM to ΩFF and |Γ| is the area of the entire interface Γ
as show in Figs. 2(a) and 4, including both solid and pore spaces. The local specific
vapor flow rate of a single pore i at a discrete coupling interface Γi is defined as

ϕi :=
ṁwater
i

%w|Γi|
, (34)

where ṁwater
i is the pore-local mass flux of water vapor across Γi and |Γi| is the area

of the discrete coupling interface (see Fig. 2(b)).

4. Numerical results and discussion

4.1. Influence of pore throat shape and corner flow

The following numerical experiment investigates how the shape of the pore throats
and the possibility of liquid phase corner flow affects the overall drying behavior. We
consider scenario SA and three different pore networks with either quadratic, circular
or triangular (equilateral) cross-sectional shapes. All pores in the left half of ΩPNM

have a fixed inscribed radius of ri = 2.2× 10−4 m while those in the right half feature
a slightly lower value of ri = 2× 10−4 m (radius distribution with zero variance) and
therefore require a higher entry pressure.

Figure 5 shows the resulting wetting-phase saturation distribution and water vapor
field for the setup with quadratic and circular pore throats after 5 and 25 hours
of simulation time. The gas phase starts to invade the left half first because of the
lower capillary entry pressure resulting from the larger pore throat radii, cf. Eq. (B1).
Moreover, we observe that the invasion progresses fastest right at the interface between
larger and smaller pores in the center of the domain. This is caused by capillary suction
of finer pores on the right side of Γ, effectively pulling the liquid water towards to upper
right. This phenomenon leads to faster drainage of the central pores and to a faster
drying front progression.

For the case with circular throats (Figs. 5(a) and 5(c)), the pores in the left half dry
out completely, resulting in a lower relative humidity in the channel above them. The
gas channel interface is hydraulically disconnected from the bulk liquid phase once the
circular throats have been invaded by the gas phase, completely displacing the liquid
phase. This results in a significant decrease of the water transport rate (50 ) as the
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evaporation process is then limited by diffusion of water vapor through the gas phase.
There is still liquid water in the pores in the right half whose connecting throats have
not been invaded by the gas phase yet. The cluster of invaded pores and throats on the
left side features a gradient of saturation with the driest pores closest to the surface.
Both parts of the porous medium get invaded more or less uniformly. The further the
liquid phase recedes into the network, the larger the diffusion length (51 ) and the
slower the evaporation process. In Fig. 5(c), the diffusive fluxes at the interface are
higher on the right half of the network, were the liquid phase is still closer to the
surface. The effect of diffusion length eventually balances out the initial advance of
the gas phase within the left half.

(a) Circular throat cross-section, t = 5 h. (b) Square throat cross-section, t = 5 h.

(c) Circular throat cross-section, t = 25 h. (d) Square throat cross-section, t = 25 h.

Figure 5. Drying pattern for different throat cross-sectional shapes. Drying under a stagnant at-
mosphere with circular (left column) or square (right column) pore throat cross-sections. Blue corresponds to

a high wetting-phase saturation Sw within ΩPNM and a high relative humidity RH in ΩFF. Note the different

color scales of Sw for square and circular throats: while some pores in (a) and (c) are completely dry, the
presence of wetting layers in the square throats, shown in (b) and (d), facilitates the redistribution of water

towards the surface such that the interface pores remain partly saturated (Sw = 0.2). Throats marked in dark

blue are fully occupied by the liquid phase while those in magenta are invaded by the air phase.

This is in contrast for the case with square throats, show in Figs. 5(b) and 5(d). All
pores within the gas phase cluster have the same liquid phase saturation of around
0.2 due to the effect of corner film flow. Corner flow ensures that wetting phase stays
hydraulically connected throughout the domain. First, the entire left half of the net-
work (featuring the larger pore bodies and lower capillary entry pressures) is invaded.
Afterwards, the air progresses in the right half, where it spreads fastest at the right
boundary due to the high pore-local vapor flow rate at the right corner interface pore.
This pore shows the strongest water vapor concentration gradient in the adjacent
free-flow region. We will discuss this effect in more detail in Section 4.2.
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Figure 6. Evaporation rates for different throat shapes (corner flow). Global evaporation rates ė

for networks with different throat shapes and a stagnant atmosphere. The inset figures show the wetting phase

saturation Sw in ΩPNM and the relative humidity RH in ΩFF after 5, 20 and 45 hours for the case with
circular throat cross sections. For all cases with σri = 0, the pore bodies have a fixed inscribed radius of

ri = 2.2× 10−4 m on the left half of the network and ri = 2× 10−4 m on the right half of the domain. For

the circle case, also the curve with a standard deviation of σri = 0.5× 10−4 m (applied to the inscribed pore
body radii of both halves of the network) is shown (see Section 4.2). The curves have been smoothed using

a median filter for ease of presentation. The thin, transparent lines show the original fluctuations which are

caused by throat invasion events (see Fig. 10), leading to pressure spikes which typically level out after of some
milliseconds and thus do not globally affect the cumulative evaporation rate. The vertical lines at the right end

of the curves indicate the end of the simulation run.

The presence (or absence) of liquid water at Γ has important implications for the
global evaporation rate ė shown in Fig. 6. All cases (square, circular or triangular
throats) exhibit the same steep decrease of ė until approximately t = 1 h due to equi-
libration processes at the interface (52 ). Following this, ė remains virtually constant
for the square and triangular throats as a result of corner flow and the presence of
liquid water at the surface. This corresponds to Stage-I (51 ) or constant-rate period
evaporation (53 ). The sharp drop of ė at around t = 37 h for the square throats marks
the end of the drying process (Sw → 0).

Using pore-network simulations, Prat (50 ) showed that the throat shape does not
affect ė as long as liquid films remain connected to the surface of the porous medium.
Our results for angular throats confirm this finding. The triangular throats feature the
same constant global evaporation rate as the square shaped ones (see green dashed line
in Fig. 6). Since we use the same inscribed radii rij for all shapes, Atot,ij,� < Atot,ij,∆

(see Fig. 1(b)) results in a slightly larger porosity for the network with triangular
throats and therefore in longer drying times. For the chosen network size, liquid films
are present throughout the entire domain at all times. The liquid films only start to
disconnect for much larger networks. We could observe this effect when increasing the
number of vertical pores to around 100 (not reported here) owing to capillary pressure
gradients and the increase of cumulative liquid-phase flow resistance. In its current
form, our model does not consider early film break-up as observed in experiments (7 ).
It is a potentially interesting extension of the model to investigate mechanism and
algorithms for film break-up based on experimental findings.

Changing from angular to circular throats strongly affects the evaporation behavior.
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Figure 6 shows a step-wise decrease of ė which can be attributed to the discrete increase
of the total evaporation length (51 ) for each horizontal row of throats (see inset figures)
invaded by the gas phase. All pores above the invaded throats dry out completely as
the atmospheric demand exceeds the diffusive flux of water vapor through the invaded
throats. In between the invasion events, ė remains virtually constant as the equilibrium
water vapor concentration in the pores right below the newly invaded throats also
remains essentially constant and only Sw,i in these pores decreases. This corresponds
to Stage-II or falling-rate period evaporation which is characterized by the absence of
liquid water at the porous medium surface. The latter also causes the relative humidity
to decrease over time in the channel right above the surface. This is in contrast to the
case with angular throats where the relative humidity remains constant due to the
presence of liquid water at Γ.

4.2. Influence of surface water distribution and network heterogeneity

Firstly, we consider scenario SA with homogeneous fixed inscribed pore radii ri =
2× 10−4 m (zero variance). While keeping all other dimensions constant, we vary the
number of pores in horizontal direction to investigate how the spacing of pores at
the coupling interface Γ influences the drying behavior. The throats have a square
cross-section shape and we run the simulations until the vapor distribution in ΩFF has
reached a steady state (constant Stage-I evaporation).

(a) Iso-lines of RH for 19 (top), 9 (center) and 3 (bot-
tom) pores at Γ.
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(b) Global evaporation rates ė and pore-local vapor flow
rates ϕi.

Figure 7. External diffusional screening. Fields and iso-lines of RH (a) and evaporation rates and vapor
flow rates (b) for different pore spacings at the coupling interface Γ (square throats and stagnant atmosphere).
The distances between the pores are {0.16, 0.85, 4.6} mm for the cases with 19, 9 and 3 pores at Γ. The iso-lines
closest to the pores correspond to RH = 0.9. For each line further away, RH decreases by 0.1. (b) shows the

global and center-pore local vapor flow rates during Stage-I for setups with different numbers of pores at the
interface. The evaporation rates and vapor flow rates are normalized by ėmax which would occur if the entire

area of Γ was occupied by a single, large water-filled pore. The pore area fraction is calculated as |Γ|−1
∑

i |Γi|,
where | · | is the area of the (local) interface.

Figure 7(a) shows close-ups of ΩFF and Γ for 19, 9 and 3 pores at the interface. We
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observe a clear difference in the resulting water vapor distribution above the pores:
in the case with 19 pores, a rather uniform and almost one-dimensional field develops
which only exhibits two-dimensional features at the left-most and right-most pores.
There, the field gradient is highest, as shown by the narrow sequence of iso-lines.
Increasing the spacing between the pores changes the vapor distribution such that
the field becomes two-dimensional at each pore for the case with 3 pores at Γ. This
also strongly increases the local vapor concentration gradient, leading to higher pore-
local vapor flow rates, as illustrated in Fig. 7(b) where normalized global and pore-local
vapor flow rates for different numbers of pores at Γ are given. For an increasing number
of pores, the global evaporation rate converges against the value that would occur if
the entire interfaces was occupied with water. The increase of the global evaporation
rate ė with an increase of wetted surface at Γ follows a nonlinear trend (54 ) which is
due to the previously mentioned change in the water vapor concentration field in ΩFF,
leading to diminishing increases of ė once the vapor field becomes more or less one-
dimensional. Reducing the number of pores at Γ on the other hand strongly increases
the pore-local vapor flow rate due to the resulting two-dimensional, spherical nature
of the vapor concentration field around the water-filled pores as shown by the dashed
line in Fig. 7(b). This “external diffusional screening” (7 ) is a strong compensation
effect such that ė decreases by less than 50 % even if the number of interface pores is
decreased from 21 to 3. This effect is expected to be even more pronounced in fully
three-dimensional cases.

Secondly, we investigate this compensation effect in a heterogeneous network. We
use scenario SA (this time in the reference setup with 19× 10 pores) and set a mean
inscribed radius of ri = 2.2× 10−4 m to the pore bodies in the left half of the network,
whereas the pores in the right half have a mean inscribed radius of ri = 2.0× 10−4 m.
Unlike before, both pore radius distributions now feature a standard deviation of
σri = 0.5× 10−4 m (log-normal distribution).

The purple line in Fig. 6 shows the resulting global evaporation rate ė. The network
dries out considerably faster compared to the case where σri = 0 (41 h vs. 53 h). The
evaporation rate remains almost constant for around 13 h (constant Stage-I evapora-
tion) and decreases afterwards as some of the pores at the surface dry out. The surface
remains partly wet until around 35 h. This is in contrast to the case with σri = 0 where
the evaporation front already recedes into the network after 10 h.

(a) t = 5 h (b) t = 30 h

Figure 8. Drying pattern for high pore-size variance. Drying under a stagnant atmosphere with throat

of circular section and σri = 0.5× 10−4 m. Blue corresponds to a high wetting-phase saturation Sw within
ΩPNM and a high relative humidity RH in ΩFF. Throats marked in dark blue are fully occupied by the liquid

phase while those in magenta are invaded by the air phase.

The variability in pore and throat sizes at the surface causes a preferential invasion
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of larger throats, while smaller pores and throats remain fully water-saturated for
a prolonged time, see Fig. 8. This explains why ė drops slower in case of increased
network heterogeneity. Furthermore, the curve is smoother because less throats get
invaded simultaneously at a given time. In addition to the prolonged presence of liquid
water at the surface, the increased network heterogeneity also elevates the pore-local
vapor flow rates when neighboring pores fall dry. This is due to the previously discussed
formation of spherical vapor concentration fields around the still water-saturated pores,
as shown by relative humidity iso-lines in Fig. 8.
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Figure 9. Temporal evolution of the pore-local vapor flow rates, ϕi, for all pores at the coupling

interfaces Γi (i ∈ [1, 19]) for the network with circular throats (σri = 0.5× 10−4 m) and stagnant air in ΩFF.

This effect is also visible in Fig. 9, showing the pore-local vapor flow rates ϕi over
time for the network with increased heterogeneity. At t = 5 h, the highest local rates
occur at the corner pores on the left and right side of Γ, as expected. The spatial
fluctuations for the other pores are caused by the gas phase invasion pattern. For
instance, the second and forth pore on the left feature a comparatively low value of ϕi
because they have already dried out after 5 h. As time progresses, more and more pores
fall dry, leading to sharp local drops of ϕi. At the same time, however, some pores
actually increase their local rate as their neighbors dry out. This is especially visible for
pore 15 after 30 h and 35 h. This compensation mechanism and the prolonged presence
of water at the surface lead an overall increase of the global evaporation rate compared
to the case with less heterogeneity.

Having focused on the processes and fluxes directly at the coupling interface, we now
turn our attention to the interior of the network. Figure 10 shows how the saturation
pattern in ΩPNM changes after a throat was invaded by the gas phase for the case with
high pore-size variance. The invasion leads to a sudden displacement of the liquid
phase by the gas phase in the pore right below the invaded throat (marked with a red
circle), such that the pore-local liquid phase saturation Sw,i drops from 1.0 to 0.46.
The displaced liquid water exits the pore through the left, right and bottom throats,
as indicated by the green cones, and leads to increased liquid phase fluxes also further
away from the invaded throat. These fluxes in turn lead to a phase redistribution
such that many pores actually gain in Sw,i, as indicated by the green numbers in
Fig. 10. For instance, Sw,i in the pore marked with ? increases from 0.12 to 0.15.
Even in the leftmost pore at the interface Γ, which is quite far away from the invaded
throat, the pore-local saturation is increased from 0.24 to 0.25. The invasion event also
influences the velocity field in ΩFF, as show by the black arrows in Fig. 10, leading to
an interesting pattern: the displaced water moving upwards on the right itself displaces
air in the partly saturated pores close to the interface. This air leaves the network,
causing the local increase of vertical velocity in the channel. At the same time, the air
protruding downwards into the network on the left side (yellow cones in Fig. 10) causes
an inflow of gas from the channel into the network. The invasion event’s impact on
the pressure and velocity fields in both domains is very limited in time and typically
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vanishes after several milliseconds.

1.0

invaded
throat

water discplaced from this pore

*

Figure 10. Invasion event and redistribution of the liquid phase. The top figure on the left shows
the saturation distribution directly before an invasion event at around t = 9 h, the figure below directly after

the throat marked with the red circle was invaded by the gas phase. The figure on the right is a close-up

the of region around the invaded throat. The yellow and green cones, scaled by Qg,ij and Qw,ij , indicate
an increased flux of the gas and liquid phase. The numbers are the discrete values of Sw,i. Green numbers

indicate an increase of pore-local saturation due to the invasion event. The top numbers in the right figure show

the saturation after the invasion event, the bottom ones the saturation before. For example, Sw,i in the pore
marked with ? rises from 0.12 to 0.15. The velocity vectors in the free-flow channel are scaled by magnitude.

4.3. Influence of advective gas phase flow

We have seen in the previous section, that interesting local gas flow phenomena oc-
cur due to interaction of the porous and the free-flow region even for a stagnant
atmosphere. In this section, we consider scenario FC, i.e. forced convection in the
channel. We will examine two different cases: one with a uniform network of pores
with ri = 4× 10−4 m and one where the pore body inscribed radii follow a log-normal
distribution with 4× 10−4 m mean and 0.5× 10−4 m standard deviation. This time,
no distinction between the left and right half of the domain is made.

Figure 11 shows the progression of the drying process for the homogeneous and
heterogeneous network under the influence of convective channel flow. A vapor con-
centration boundary layer forms above Γ right at the beginning of the process and
remains essentially constant until the network completely dries out at around t ≈ 16 h
for the homogeneous case and t ≈ 17 h for the heterogeneous case, see Figs. 11(g)
and 11(h). In the channel, only at late times notable differences between the two cases
can be observed. This is again due to the continuous presence of liquid water at the
interface pores (corner flow), leading to a fully water-vapor-saturated gas atmosphere
right above the pores. The temporal evolution of invasion pattern of the gas phase in
ΩPNM, however, differs strongly between the two cases. At t = 1 h, all pores at Γ are
partly saturated in the homogeneous network and all but two connecting throats have
already been invaded by the gas phase.

20



AC
CE
PT
ED
M
AN
US
CR
IP
T(a) Homogeneous network, t = 1 h. (b) Heterogeneous network, t = 1 h.

(c) Homogeneous network, t = 2 h. (d) Heterogeneous network, t = 2 h.

(e) Homogeneous network, t = 10 h. (f) Heterogeneous network, t = 12 h.

(g) Homogeneous network, t ≈ 16 h. (h) Heterogeneous network, t ≈ 17 h.

Figure 11. Effect of gas phase flow: homogeneous vs. heterogeneous network. Drying with convec-

tive channel flow for a uniform (left column) and heterogeneous (right column) network with square throats.
Blue corresponds to a high wetting-phase saturation Sw within ΩPNM and a high relative humidity RH in ΩFF.

Throats marked in dark blue are fully occupied by the liquid phase while those in magenta are invaded by the
air phase. The yellow cones are scaled by Qg,ij and indicate flow paths for the gas phase.
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In contrast to that, six interface pores remained fully water-saturated in the het-
erogeneous case which can be explained by their comparatively small inscribed radius
ri, leading to a higher capillary pressure and stronger suction potential. As explained
above, the throat radius correlates with the adjacent pore-body radii and we can ob-
serve that only wide throats connected to large pores have been invaded after one
hour. The gas phase continues to spread mainly on the left side of the homogeneous
network after t = 2 h, Figs. 11(c) and 11(e), due to the highest pore-local vapor flow
rates on the left, cf. Fig. 12(a). This is caused by the constant supply of warm dry air
from the left. The dry air picks up water vapor as it streaks over the porous medium,
leading to decreased pore-local vapor flow rates downstream.

The gas phase spreads differently in the heterogeneous network. Here, the invasion
process is controlled by pore space geometry rather than by atmospheric demand.
The difference in the gas-phase saturation distribution pattern has also consequences
for the global evaporation rates, shown in Fig. 13. Here, ė remains virtually constant
until around t = 11 h (Stage-I evaporation). After that, the evaporation rate increases
which seems unexpected at first glance.

For the homogeneous case, this effect occurs sooner and even more pronounced. The
reason for this is the establishment of continuous flow paths for the air phase in ΩPNM

which we could already observe in previous work (19 ). The air phase flows horizontally
through the first row of invaded pores already after t = 2 h for the homogeneous
network, as shown by the yellow cones in Fig. 11(c). This leads to advective transport
of water vapor within the network, effectively enhancing the mass transfer by pushing
out the vapor as shown by the increase local rates for the three rightmost pores (17–19)
in Fig. 12(a) at t = 2 h.
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(a) Homogeneous network.
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(b) Heterogeneous network.

Figure 12. Temporal evolution of the pore-local vapor flow rates, ϕi, for all pores at the coupling
interfaces Γi (i ∈ [1, 19]) for the uniform (a) and heterogeneous (b) network with square throats and air flow

in ΩFF.

At the same time, the local rates at the very left pores decrease due to the competing
effect of advective air flow into the pore network and diffusion caused by the vapor
concentration gradient in opposite direction. The absence of a continuous air flow
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path until t = 11 h in the heterogeneous network explains its constant evaporation
rate since the advective effects described above do not come into play here yet. Some
localized air flow effects are observed at pores 16 and 17, Figs. 11(d) and 12(b). At
pore 16, the local vapor flow rate even becomes slightly negative, meaning that there
is a net inflow of vapor into the network from the vapor concentration boundary layer
due to advection. Finally, after t = 12 h, the heterogeneous network also shows a well-
developed but more complex air flow path, Fig. 11(f), leading to a slight increase of
the global evaporation rate (Fig. 13).
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Figure 13. Global evaporation rates: homogeneous vs. heterogeneous network. ė for a uniform and

a heterogeneous network with square throats and air flow in ΩFF. The inset figures show the wetting phase
saturation Sw in ΩPNM and the relative humidity RH in ΩFF after 10 and 12 hours for the heterogeneous

network. Here, a continuous air flow path develops after around 11 hours, leading to an increase of ė due

to advective effects. Before that, the gas phase remains largely unconnected (left inset figure) such that ė
also remains constant. Curves have been smoothed using a median filter for ease of presentation. The thin,

transparent lines show the original fluctuations which are caused by throat invasion events. The vertical lines

at the right end of the curves indicate the end of the simulation run.

In the final stage of the drying process, the interface pores dry out completely,
Figs. 11(g) and 11(h), and the relative humidity above them drops rapidly. While the
remaining amount of liquid water in ΩPNM (Sw ≈ 1× 10−3) is distributed mainly on
the right half of the homogeneous network due to advective effects, some singular small
pores hold the residual water in the heterogeneous network due to capillary forces.

As initially mentioned in the introduction, instead of using a pre-calculated, fixed
velocity field in ΩFF and neglecting the advective gas flow in the network (10 , 11 ),
we dynamically solve for vg and Qij,g in each time step. We have already seen that
flow paths for the gas phase evolving in the network (Fig. 11) alter the evaporation
behavior. Figure 14 shows that during the drying process, also the velocity distribution
in ΩFF changes as the air phases intrudes into the network. At t = 1 h, no continuous
pathway in the network has yet been established. The velocity profile, Fig. 14(b),
is almost symmetric with the important exception that slip flow above the interface
pores, cf. Eq. (24), leads to higher horizontal velocities at porous interface compared to
the channel top. As described above, a horizontal gas flow path develops right beneath
the surface of the network at t = 1 h. As a consequence, a small fraction of the free
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streaming air will bypass the channel through the network, effectively reducing the
mean channel velocity right above ΩFF. As more and more throats get invaded, the
portion of air traversing the network increases until after 15 h all throats are invaded
and the free-flow velocity profile has noticeably tilted towards lower velocities near Γ.

(a) Velocity field after t = 1 h.
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(b) Velocity profiles for different times.

(c) Velocity field after t = 15 h. (d) Density field after t = 1 h.
Figure 14. Free-flow velocity field and density. Change of the velocity field in ΩFF over time (a-c)
and density field at t = 1 h (d). (b) shows the horizontal velocity profiles evaluated along the red line in (a)

and (c). There are no horizontal velocity degrees of freedom at the lower and upper wall of the channel when

using the staggered grid discretization scheme in ΩFF, therefore the curve does not show values on the channel
boundaries. vx approaches zero at the upper wall (no-slip condition) while the slip-condition Eq. (25) leads

to higher values right above the pores. At t = 15 h the gas phase has fully penetrated the network which

noticeably reduces the mean velocity in the channel and tilts the velocity profile towards lower velocities near
the interface as a portion of the free air stream now bypasses the channel through the network. The yellow

cones are scaled by Qg,ij and indicate flow paths for the gas phase.

Table 1. Volume flow rates in ΩFF evaluated at the inlet and at the center (see red line in Fig. 14(a)) of

channel.

time [h] QFF
g,in [1× 10−8 m3 s−1] QFF

g,mid [1× 10−8 m3 s−1] QFF
g,mid/Q

FF
g,in [-]

1 9.58 9.43 0.98
2 9.72 9.35 0.96

10 9.88 9.26 0.94
15 10.27 8.77 0.85

Table 1 shows the temporal evolution of volume flow rates QFF
g at the inlet and at

the center of the free-flow channel as well as their ratio. At t = 1 h, the volume flow
at the inlet is already 2 % higher compared to the rate at the channel center despite
the fact, that the gas phase does not yet flow in ΩPNM. This can be explained by the
spatial variation of density, shown in Fig. 14(d), due to the change in temperature
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caused by evaporative cooling. The increase in density above the network lowers the
volume flow rate while the total mass flow rate is conserved (taking also into account
the net mass transfer from ΩPNM to ΩFF due to evaporation). After t = 2 h, air starts to
flow through the network and with increasing time and number of invaded throats, the
ratio QFF

g,mid/Q
FF
g,in rises until 15 % of the total gas volume flow bypasses the channel

through the network. As this effectively also increases the systems total flow cross-
sectional area, lowering the system’s overall horizontal flow resistance, the inlet flow
rate also rises since we keep the pressure boundaries conditions on the inlet and the
outlet of the channel constant over time. This essentially increases the total flow of gas
passing the inlet and outlet of ΩFF which, in combination with the advective gas flow
in ΩPNM, eventually accelerates the drying process. The effects described above show
the complex interaction between free flow and the porous domain which also changes
over the duration of the drying process.

4.4. Model limitations and outlook

While we could show that many physical effects are captured by the coupled PNM
/ free-flow model, we also want to point out current shortcomings of the model. As
discussed above, the liquid corner films in angular throat do not break but rather
become thinner and thinner and their conductivity approaches zero. In experiments
(7 ), it is observed that films break when they reach a certain thickness, depending
on the local geometry and fluid and solid properties. This effect should be explicitly
considered in future work.

The effect of energy transport through the solid phase is currently not captured since
we only considered the pore space in the network. We will address this issue in future
work, using a dual network approach that also allows to resolve local thermal non-
equilibrium between the solid and the fluid phase (18 ) which could become important
for very fast drying processes.

Further planned model extensions include the effect of (salt) precipitation in the net-
work and the interaction with turbulent free flow in combination with rough surfaces.
We aim to validate our model based on microfluidic drying experiments. Furthermore,
we plan to apply our model to setups presented in existing work (9 –11 ) and provide
a model comparison. It will be interesting to investigate cases where the pore-network
acts as a block structure subject to frontal air flow. Here, stream-wise percolation
paths of air could further enhance the advective gas transport within the network.

Finally, a drawback of the current approach is computational efficiency. Solving the
Navier-Stokes equations including component and energy transport in the gas channel
is costly. In combination with small time steps required by the pore-network model
to resolve the complex physical flow processes in the network, this leads to significant
cost. For instance, one of the simulations shown in Fig. 5 took several hours on an
ordinary laptop (single core execution). However, we observed that apart from the
local interactions around invasion events shown in Fig. 10, changes in velocity, density,
temperature, and relative humidity only occur on slow time-scales. It is therefore
conceivable to increase efficiency considerably by, for instance, only solving the free-
flow velocity field after the occurrence of invasion effects. We note that care must
be taken to ensure mass and energy conservation. In addition, we are working on
parallelization to improve the model’s performance. If the model can be sufficiently
optimized, it will be interesting to recalculate drying experiments based on micro-
tomography imaging data.
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As a last note, we want to stress that model’s degree of detail, e.g. with respect to
temporal resolution, might seem exaggerated for certain real-world drying applications.
However, we see it’s true value in providing an in-depth physical insight into many
complex, nonlinear and interacting effects. The possibility to create reference solutions
not constrained by a rather large number of assumptions and simplifications, and the
model’s flexibility and extensibility, can help to improve and develop other, more
efficient model concepts.

5. Conclusion

We have presented a fully coupled free-flow/pore-network model for simulating drying
processes on the pore scale. The model is inherently mass and energy conservative and
can provide detailed insights in the physical processes involved in drying. Applied to
a range of setups inspired by microfluidic experiments, with each setup dedicated to
a specific aspect of drying, the model was able to reproduce the relevant fundamental
physical phenomena.

We have shown that the presence of corner flow in angular throats leads to higher
and constant evaporation rates compared to a case with circular throats where the dry-
ing front recedes into the network. The spatial arrangement of water-filled pores at the
surface of the porous domain strongly affects the pore-local vapor flow rates. The lat-
ter increases with larger distances between the interface pores as the one-dimensional
structure of the water vapor concentration field changes to a spherical one above the
pores, yielding larger concentration gradients and hence, diffusive fluxes. Considering
a case with air flow above the network, we could observe how network heterogeneity
influences the drying behavior both locally and globally. The establishment of continu-
ous air-phase flow paths in the homogeneous network added another mechanism to the
otherwise diffusion-controlled evaporation process: advective fluxes of the gas phase
enhanced the transport of water vapor out of the pore network. With an increasing
number of gas-phase invaded pores in the uniform network, the effect of advection
became stronger, leading to a temporal increase of the global evaporation rate. In con-
trast to that, the evaporation rate remained constant for a much longer time in case
of network heterogeneity which prevented to establishment of preferential gas phase
flow paths such that advection only became important once the gas phase was able to
connect the formerly disconnected patches of partly saturated pores in a later stage of
the evaporation process. Only then, the global rate increased, too. The development
of network gas flow paths also affects the free-flow domain such that the velocity does
not remain constant but changes over time due air bypassing the free-flow channel
through the network. We see our model concept presented here as a first important
step towards a more detailed pore-scale description of drying processes.

Code availability

A module containing the source code used to produce the numerical results is publicly
available at https://git.iws.uni-stuttgart.de/dumux-pub/weishaupt2021a.
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Appendix A. Capillary entry pressure

The capillary entry pressure that has to be overcome to invade a pore throat saturated
with the wetting fluid is given by (36 )

pc,e =
γ
(

1 + 2
√
πG
)

cos(θ)Fd(θ,G)

rij
, (A1)

Fd(θ,G) =
1 +

√
1 + 4GE/ cos2(θ)

1 + 2
√
πG

, (A2)

E = π − 3θ + 3 sin(θ) cos(θ)− cos2(θ)

4G
, (A3)

where θ denotes the contact angle, γ is the interfacial tension, Fd(θ,G) is a dimension-
less correction factor which becomes 1 for θ = 0, and G is the shape factor introduced
in Eq. (10).

30



AC
CE
PT
ED
M
AN
US
CR
IP
T

If the capillary pressure falls below

pc,s =
γ cos(θ)

rij
(1− tan(θ) tan(β)) (A4)

snap-off occurs (36 ) and the throat is saturated again by the wetting phase. Here β is
the corner half-angle (assuming square or equilateral triangle cross-sectional shapes).
We always consider max(pc,i, pc,j) to determine snap-off processes.

Appendix B. Inscribed throat radius

The inscribed throat radius rij depends on the adjacent pore body radii ri and rj
(28 ):

rij = dijζiζj

(
ζ

1/n
i + ζ

1/n
j

)−n
, n > 0 (B1)

ζk =
rkd
−1
ij sin(π/4)(

1− rkd−1
ij cos(π/4)

)n , k ∈ {i, j} , (B2)

where dij is the pore center-to-center distance and n controls the scaling between rij
and the adjacent pore body radii. We chose n = 0.1 in this work.
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